IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v65y2016i2d10.1007_s10589-016-9830-4.html
   My bibliography  Save this article

On the update of constraint preconditioners for regularized KKT systems

Author

Listed:
  • Stefania Bellavia

    (Università degli Studi di Firenze)

  • Valentina De Simone

    (Seconda Università degli Studi di Napoli)

  • Daniela di Serafino

    (Seconda Università degli Studi di Napoli)

  • Benedetta Morini

    (Università degli Studi di Firenze)

Abstract

We address the problem of preconditioning sequences of regularized KKT systems, such as those arising in interior point methods for convex quadratic programming. In this case, constraint preconditioners (CPs) are very effective and widely used; however, when solving large-scale problems, the computational cost for their factorization may be high, and techniques for approximating them appear as a convenient alternative. Here, given a block $$LDL^T$$ L D L T factorization of the CP associated with a KKT matrix of the sequence, called seed matrix, we present a technique for updating the factorization and building inexact CPs for subsequent matrices of the sequence. We have recently proposed an updating procedure that performs a low-rank correction of the Schur complement of the (1,1) block of the CP for the seed matrix. Now we focus on KKT sequences with nonzero (2,2) blocks and make a step further, by enriching the low-rank correction of the Schur complement by an additional cheap update. The latter update takes into account information not included in the former one and expressed as a diagonal modification of the low-rank correction. Theoretical results and numerical experiments show that the new strategy can be more effective than the procedure based on the low-rank modification alone.

Suggested Citation

  • Stefania Bellavia & Valentina De Simone & Daniela di Serafino & Benedetta Morini, 2016. "On the update of constraint preconditioners for regularized KKT systems," Computational Optimization and Applications, Springer, vol. 65(2), pages 339-360, November.
  • Handle: RePEc:spr:coopap:v:65:y:2016:i:2:d:10.1007_s10589-016-9830-4
    DOI: 10.1007/s10589-016-9830-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-016-9830-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-016-9830-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Bellavia, 1998. "Inexact Interior-Point Method," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 109-121, January.
    2. Luca Bergamaschi & Jacek Gondzio & Manolo Venturin & Giovanni Zilli, 2007. "Inexact constraint preconditioners for linear systems arising in interior point methods," Computational Optimization and Applications, Springer, vol. 36(2), pages 137-147, April.
    3. Jacek Gondzio, 2012. "Matrix-free interior point method," Computational Optimization and Applications, Springer, vol. 51(2), pages 457-480, March.
    4. Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Gondzio & Spyridon Pougkakiotis & John W. Pearson, 2022. "General-purpose preconditioning for regularized interior point methods," Computational Optimization and Applications, Springer, vol. 83(3), pages 727-757, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cecilia Orellana Castro & Manolo Rodriguez Heredia & Aurelio R. L. Oliveira, 2023. "Recycling basic columns of the splitting preconditioner in interior point methods," Computational Optimization and Applications, Springer, vol. 86(1), pages 49-78, September.
    2. Gondzio, Jacek, 2016. "Crash start of interior point methods," European Journal of Operational Research, Elsevier, vol. 255(1), pages 308-314.
    3. Yiran Cui & Keiichi Morikuni & Takashi Tsuchiya & Ken Hayami, 2019. "Implementation of interior-point methods for LP based on Krylov subspace iterative solvers with inner-iteration preconditioning," Computational Optimization and Applications, Springer, vol. 74(1), pages 143-176, September.
    4. Luciana Casacio & Aurelio R. L. Oliveira & Christiano Lyra, 2018. "Using groups in the splitting preconditioner computation for interior point methods," 4OR, Springer, vol. 16(4), pages 401-410, December.
    5. Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
    6. Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
    7. Manolo Rodriguez Heredia & Aurelio Ribeiro Leite Oliveira, 2020. "A new proposal to improve the early iterations in the interior point method," Annals of Operations Research, Springer, vol. 287(1), pages 185-208, April.
    8. Dominik Garmatter & Margherita Porcelli & Francesco Rinaldi & Martin Stoll, 2023. "An improved penalty algorithm using model order reduction for MIPDECO problems with partial observations," Computational Optimization and Applications, Springer, vol. 84(1), pages 191-223, January.
    9. J. Gondzio & F. N. C. Sobral, 2019. "Quasi-Newton approaches to interior point methods for quadratic problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 93-120, September.
    10. Filippo Zanetti & Jacek Gondzio, 2023. "An Interior Point–Inspired Algorithm for Linear Programs Arising in Discrete Optimal Transport," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1061-1078, September.
    11. Jacek Gondzio, 2012. "Matrix-free interior point method," Computational Optimization and Applications, Springer, vol. 51(2), pages 457-480, March.
    12. Castro, Jordi & Escudero, Laureano F. & Monge, Juan F., 2023. "On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 268-285.
    13. Bittencourt, Tiberio & Ferreira, Orizon Pereira, 2015. "Local convergence analysis of Inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 28-38.
    14. Fatemeh Marzbani & Akmal Abdelfatah, 2024. "Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-31, January.
    15. Bethany L. Nicholson & Wei Wan & Shivakumar Kameswaran & Lorenz T. Biegler, 2018. "Parallel cyclic reduction strategies for linear systems that arise in dynamic optimization problems," Computational Optimization and Applications, Springer, vol. 70(2), pages 321-350, June.
    16. Benedetta Morini & Valeria Simoncini & Mattia Tani, 2017. "A comparison of reduced and unreduced KKT systems arising from interior point methods," Computational Optimization and Applications, Springer, vol. 68(1), pages 1-27, September.
    17. Yu, Jianxi & Liu, Pei & Li, Zheng, 2021. "Data reconciliation of the thermal system of a double reheat power plant for thermal calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. de Groot, Oliver & Mazelis, Falk & Motto, Roberto & Ristiniemi, Annukka, 2021. "A toolkit for computing Constrained Optimal Policy Projections (COPPs)," Working Paper Series 2555, European Central Bank.
    19. David Ek & Anders Forsgren, 2023. "A structured modified Newton approach for solving systems of nonlinear equations arising in interior-point methods for quadratic programming," Computational Optimization and Applications, Springer, vol. 86(1), pages 1-48, September.
    20. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:65:y:2016:i:2:d:10.1007_s10589-016-9830-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.