IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v319y2024i2p413-426.html
   My bibliography  Save this article

A regularized interior point method for sparse optimal transport on graphs

Author

Listed:
  • Cipolla, S.
  • Gondzio, J.
  • Zanetti, F.

Abstract

In this work, the authors address the Optimal Transport (OT) problem on graphs using a proximal stabilized Interior Point Method (IPM). In particular, strongly leveraging on the induced primal–dual regularization, the authors propose to solve large scale OT problems on sparse graphs using a bespoke IPM algorithm able to suitably exploit primal–dual regularization in order to enforce scalability. Indeed, the authors prove that the introduction of the regularization allows to use sparsified versions of the normal Newton equations to inexpensively generate IPM search directions. A detailed theoretical analysis is carried out showing the polynomial convergence of the inner algorithm in the proposed computational framework. Moreover, the presented numerical results showcase the efficiency and robustness of the proposed approach when compared to network simplex solvers.

Suggested Citation

  • Cipolla, S. & Gondzio, J. & Zanetti, F., 2024. "A regularized interior point method for sparse optimal transport on graphs," European Journal of Operational Research, Elsevier, vol. 319(2), pages 413-426.
  • Handle: RePEc:eee:ejores:v:319:y:2024:i:2:p:413-426
    DOI: 10.1016/j.ejor.2023.11.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723008688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.11.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:319:y:2024:i:2:p:413-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.