IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v25y2017i4d10.1007_s10100-016-0452-9.html
   My bibliography  Save this article

Parallel search paths for the simplex algorithm

Author

Listed:
  • Péter Tar

    (University of Pannonia)

  • Bálint Stágel

    (University of Pannonia)

  • István Maros

    (University of Pannonia)

Abstract

It is well known that the simplex method is inherently a sequential algorithm with little scope for parallelization. Even so, during the last decades several attempts were made to parallelize it since it is one of the most important algorithms for solving linear optimization problems. Such parallelization ideas mostly rely on iteration parallelism and overlapping. Since the simplex method goes through a series of basic solutions until it finds an optimal solution, each of them must be available before performing the next basis change. This phenomenon imposes a limit on the performance of the parallelized version of the simplex method which uses overlapping iterations. Another approach can be considered if we think about alternative paths on the n-dimensional simplex polyhedron. As the simplex method goes through the edges of this polyhedron it is generally true that the speed of convergence of the algorithm is not smooth. It depends on the actual part of the surface. If a parallel version of the simplex algorithm simultaneously goes on different paths on this surface a highly reliable algorithm can be constructed. There is no known dominating strategy for pivot selection. Therefore, one can try different pivot selection methods in parallel in order to guide the algorithm on different pathways. This approach can be used effectively with periodic synchronization on shared memory multi-core computing environments to speed up the solution algorithm and get around numerically and/or algorithmically difficult situations throughout the computations.

Suggested Citation

  • Péter Tar & Bálint Stágel & István Maros, 2017. "Parallel search paths for the simplex algorithm," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 967-984, December.
  • Handle: RePEc:spr:cejnor:v:25:y:2017:i:4:d:10.1007_s10100-016-0452-9
    DOI: 10.1007/s10100-016-0452-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-016-0452-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-016-0452-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harry M. Markowitz, 1957. "The Elimination form of the Inverse and its Application to Linear Programming," Management Science, INFORMS, vol. 3(3), pages 255-269, April.
    2. William J. Carolan & James E. Hill & Jeffery L. Kennington & Sandra Niemi & Stephen J. Wichmann, 1990. "An Empirical Evaluation of the KORBX® Algorithms for Military Airlift Applications," Operations Research, INFORMS, vol. 38(2), pages 240-248, April.
    3. Jonathan Eckstein & İ. İlkay Boduroğlu & Lazaros C. Polymenakos & Donald Goldfarb, 1995. "Data-Parallel Implementations of Dense Simplex Methods on the Connection Machine CM-2," INFORMS Journal on Computing, INFORMS, vol. 7(4), pages 402-416, November.
    4. Maros, Istvan & Haroon Khaliq, Mohammad, 2002. "Advances in design and implementation of optimization software," European Journal of Operational Research, Elsevier, vol. 140(2), pages 322-337, July.
    5. Robert E. Bixby, 2002. "Solving Real-World Linear Programs: A Decade and More of Progress," Operations Research, INFORMS, vol. 50(1), pages 3-15, February.
    6. J. Hall & K. McKinnon, 1998. "ASYNPLEX, an asynchronous parallelrevised simplex algorithm," Annals of Operations Research, Springer, vol. 81(0), pages 27-50, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tibor Csendes & Csanád Imreh & József Temesi, 2017. "Editorial," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 739-741, December.
    2. Zsolt Darvay & Petra Renáta Takács, 2018. "Large-step interior-point algorithm for linear optimization based on a new wide neighbourhood," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 551-563, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ploskas, Nikolaos & Samaras, Nikolaos, 2015. "Efficient GPU-based implementations of simplex type algorithms," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 552-570.
    2. Defeng Liu & Andrea Lodi & Mathieu Tanneau, 2021. "Learning chordal extensions," Journal of Global Optimization, Springer, vol. 81(1), pages 3-22, September.
    3. Sophia Voulgaropoulou & Nikolaos Samaras & Nikolaos Ploskas, 2022. "Predicting the Execution Time of the Primal and Dual Simplex Algorithms Using Artificial Neural Networks," Mathematics, MDPI, vol. 10(7), pages 1-21, March.
    4. Robert E. Bixby & Alexander Martin, 2000. "Parallelizing the Dual Simplex Method," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 45-56, February.
    5. Thiago Serra & Ryan J. O’Neil, 2020. "MIPLIBing: Seamless Benchmarking of Mathematical Optimization Problems and Metadata Extensions," SN Operations Research Forum, Springer, vol. 1(3), pages 1-6, September.
    6. Bach, Lukas & Hasle, Geir & Schulz, Christian, 2019. "Adaptive Large Neighborhood Search on the Graphics Processing Unit," European Journal of Operational Research, Elsevier, vol. 275(1), pages 53-66.
    7. Ole Bent Olesen & Niels Christian Petersen & Victor V. Podinovski, 2022. "Scale characteristics of variable returns-to-scale production technologies with ratio inputs and outputs," Annals of Operations Research, Springer, vol. 318(1), pages 383-423, November.
    8. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    9. Duque, Daniel & Lozano, Leonardo & Medaglia, Andrés L., 2015. "An exact method for the biobjective shortest path problem for large-scale road networks," European Journal of Operational Research, Elsevier, vol. 242(3), pages 788-797.
    10. Harry M. Markowitz, 2004. "Trains of Thought," Chapters, in: Michael Szenberg & Lall Ramrattan (ed.), Reflections of Eminent Economists, chapter 17, Edward Elgar Publishing.
    11. Castro, Jordi, 2006. "Minimum-distance controlled perturbation methods for large-scale tabular data protection," European Journal of Operational Research, Elsevier, vol. 171(1), pages 39-52, May.
    12. LOUTE, Etienne, 2003. "Gaussian elimination as a computational paradigm," LIDAM Discussion Papers CORE 2003059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Zygmunt Stanula & Marek Wieruszewski & Adam Zydroń & Krzysztof Adamowicz, 2023. "Optimizing Forest-Biomass-Distribution Logistics from a Multi-Level Perspective—Review," Energies, MDPI, vol. 16(24), pages 1-17, December.
    14. Joseph Elble & Nikolaos Sahinidis, 2012. "Scaling linear optimization problems prior to application of the simplex method," Computational Optimization and Applications, Springer, vol. 52(2), pages 345-371, June.
    15. Harry M. Markowitz, 2002. "Efficient Portfolios, Sparse Matrices, and Entities: A Retrospective," Operations Research, INFORMS, vol. 50(1), pages 154-160, February.
    16. Gass, Saul I., 1997. "The Washington operations research connection: the rest of the story," Socio-Economic Planning Sciences, Elsevier, vol. 31(4), pages 245-255, December.
    17. Andrey M. Lizyayev, 2009. "Stochastic Dominance: Convexity and Some Efficiency Tests," Tinbergen Institute Discussion Papers 09-112/2, Tinbergen Institute, revised 05 Jan 2010.
    18. Timo Berthold & Jakob Witzig, 2021. "Conflict Analysis for MINLP," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 421-435, May.
    19. David R. Morrison & Jason J. Sauppe & Sheldon H. Jacobson, 2013. "A Network Simplex Algorithm for the Equal Flow Problem on a Generalized Network," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 2-12, February.
    20. Leonardo Lozano & Daniel Duque & Andrés L. Medaglia, 2016. "An Exact Algorithm for the Elementary Shortest Path Problem with Resource Constraints," Transportation Science, INFORMS, vol. 50(1), pages 348-357, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:25:y:2017:i:4:d:10.1007_s10100-016-0452-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.