IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v74y2019i1d10.1007_s10589-019-00102-z.html
   My bibliography  Save this article

Quasi-Newton approaches to interior point methods for quadratic problems

Author

Listed:
  • J. Gondzio

    (University of Edinburgh)

  • F. N. C. Sobral

    (State University of Maringá)

Abstract

Interior point methods (IPM) rely on the Newton method for solving systems of nonlinear equations. Solving the linear systems which arise from this approach is the most computationally expensive task of an interior point iteration. If, due to problem’s inner structure, there are special techniques for efficiently solving linear systems, IPMs demonstrate a reduced computing time and are able to solve large scale optimization problems. It is tempting to try to replace the Newton method by quasi-Newton methods. Quasi-Newton approaches to IPMs either are built to approximate the Lagrangian function for nonlinear programming problems or provide an inexpensive preconditioner. In this work we study the impact of using quasi-Newton methods applied directly to the nonlinear system of equations for general quadratic programming problems. The cost of each iteration can be compared to the cost of computing correctors in a usual interior point iteration. Numerical experiments show that the new approach is able to reduce the overall number of matrix factorizations.

Suggested Citation

  • J. Gondzio & F. N. C. Sobral, 2019. "Quasi-Newton approaches to interior point methods for quadratic problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 93-120, September.
  • Handle: RePEc:spr:coopap:v:74:y:2019:i:1:d:10.1007_s10589-019-00102-z
    DOI: 10.1007/s10589-019-00102-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00102-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00102-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gondzio, Jacek, 1995. "HOPDM (version 2.12) -- A fast LP solver based on a primal-dual interior point method," European Journal of Operational Research, Elsevier, vol. 85(1), pages 221-225, August.
    2. Benedetta Morini & Valeria Simoncini & Mattia Tani, 2017. "A comparison of reduced and unreduced KKT systems arising from interior point methods," Computational Optimization and Applications, Springer, vol. 68(1), pages 1-27, September.
    3. Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
    4. Mauricio G. C. Resende & K. G. Ramakrishnan & Zvi Drezner, 1995. "Computing Lower Bounds for the Quadratic Assignment Problem with an Interior Point Algorithm for Linear Programming," Operations Research, INFORMS, vol. 43(5), pages 781-791, October.
    5. Jacek Gondzio, 2012. "Matrix-free interior point method," Computational Optimization and Applications, Springer, vol. 51(2), pages 457-480, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhi-Long Dong & Fengmin Xu & Yu-Hong Dai, 2020. "Fast algorithms for sparse portfolio selection considering industries and investment styles," Journal of Global Optimization, Springer, vol. 78(4), pages 763-789, December.
    2. David Ek & Anders Forsgren, 2023. "A structured modified Newton approach for solving systems of nonlinear equations arising in interior-point methods for quadratic programming," Computational Optimization and Applications, Springer, vol. 86(1), pages 1-48, September.
    3. David Ek & Anders Forsgren, 2021. "Approximate solution of system of equations arising in interior-point methods for bound-constrained optimization," Computational Optimization and Applications, Springer, vol. 79(1), pages 155-191, May.
    4. Kirschner, Felix, 2023. "Conic optimization with applications in finance and approximation theory," Other publications TiSEM e9bef4a5-ee46-45be-90d7-9, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
    2. Yiran Cui & Keiichi Morikuni & Takashi Tsuchiya & Ken Hayami, 2019. "Implementation of interior-point methods for LP based on Krylov subspace iterative solvers with inner-iteration preconditioning," Computational Optimization and Applications, Springer, vol. 74(1), pages 143-176, September.
    3. Stefania Bellavia & Valentina De Simone & Daniela di Serafino & Benedetta Morini, 2016. "On the update of constraint preconditioners for regularized KKT systems," Computational Optimization and Applications, Springer, vol. 65(2), pages 339-360, November.
    4. Gondzio, Jacek, 2016. "Crash start of interior point methods," European Journal of Operational Research, Elsevier, vol. 255(1), pages 308-314.
    5. Cecilia Orellana Castro & Manolo Rodriguez Heredia & Aurelio R. L. Oliveira, 2023. "Recycling basic columns of the splitting preconditioner in interior point methods," Computational Optimization and Applications, Springer, vol. 86(1), pages 49-78, September.
    6. Manolo Rodriguez Heredia & Aurelio Ribeiro Leite Oliveira, 2020. "A new proposal to improve the early iterations in the interior point method," Annals of Operations Research, Springer, vol. 287(1), pages 185-208, April.
    7. Gondzio, Jacek & González-Brevis, Pablo & Munari, Pedro, 2013. "New developments in the primal–dual column generation technique," European Journal of Operational Research, Elsevier, vol. 224(1), pages 41-51.
    8. Cosmin G. Petra & Florian A. Potra, 2019. "A homogeneous model for monotone mixed horizontal linear complementarity problems," Computational Optimization and Applications, Springer, vol. 72(1), pages 241-267, January.
    9. Luciana Casacio & Aurelio R. L. Oliveira & Christiano Lyra, 2018. "Using groups in the splitting preconditioner computation for interior point methods," 4OR, Springer, vol. 16(4), pages 401-410, December.
    10. Bittencourt, Tiberio & Ferreira, Orizon Pereira, 2015. "Local convergence analysis of Inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 28-38.
    11. Stojkovic, Nebojsa V. & Stanimirovic, Predrag S., 2001. "Two direct methods in linear programming," European Journal of Operational Research, Elsevier, vol. 131(2), pages 417-439, June.
    12. Caprara, Alberto, 2008. "Constrained 0-1 quadratic programming: Basic approaches and extensions," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1494-1503, June.
    13. Vittorio Maniezzo, 1999. "Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 358-369, November.
    14. de Groot, Oliver & Mazelis, Falk & Motto, Roberto & Ristiniemi, Annukka, 2021. "A toolkit for computing Constrained Optimal Policy Projections (COPPs)," Working Paper Series 2555, European Central Bank.
    15. Peter Kall & János Mayer, 2006. "Some insights into the solution algorithms for SLP problems," Annals of Operations Research, Springer, vol. 142(1), pages 147-164, February.
    16. Cosmin Petra & Mihai Anitescu, 2012. "A preconditioning technique for Schur complement systems arising in stochastic optimization," Computational Optimization and Applications, Springer, vol. 52(2), pages 315-344, June.
    17. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
    18. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.
    19. Michaël Allouche & Emmanuel Gobet & Clara Lage & Edwin Mangin, 2023. "Structured Dictionary Learning of Rating Migration Matrices for Credit Risk Modeling," Working Papers hal-03715954, HAL.
    20. Kypreos, Socrates, 2005. "Modeling experience curves in MERGE (model for evaluating regional and global effects)," Energy, Elsevier, vol. 30(14), pages 2721-2737.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:74:y:2019:i:1:d:10.1007_s10589-019-00102-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.