IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v86y2023i1d10.1007_s10589-023-00492-1.html
   My bibliography  Save this article

Recycling basic columns of the splitting preconditioner in interior point methods

Author

Listed:
  • Cecilia Orellana Castro

    (Federal University of Southern and Southeastern Pará)

  • Manolo Rodriguez Heredia

    (Federal University of Southern and Southeastern Pará)

  • Aurelio R. L. Oliveira

    (University of Campinas)

Abstract

Theoretical results and numerical experiments show that the linear systems originating from the last iterations of interior point methods (IPM) are very ill-conditioned. For this reason, preconditioners are necessary to approach this problem. In addition to that, in large-scale problems, the use of iterative methods and implicit preconditioners is essential because we only compute matrix–vector multiplications. Preconditioners with a lower computational cost than the splitting preconditioner only have good performance in the initial iterations of the IPM, so this preconditioner has become very important in the last iterations. The study of improvements thereof is justified. This paper studies the variation of the diagonal matrix D entries that appear in the linear systems to be solved to try to reuse or recycle some linearly independent columns of the splitting preconditioner base previously computed in a given IPM iteration to build another basis in the next one. It is justified by the fact that a subset of linearly independent columns remains linearly independent, and from that available subset, one may complete the number of columns necessary to form the new base. The numerical results show that the column recycling proposal improves the speed and robustness of the original approach for a test set, especially for large-scale problems.

Suggested Citation

  • Cecilia Orellana Castro & Manolo Rodriguez Heredia & Aurelio R. L. Oliveira, 2023. "Recycling basic columns of the splitting preconditioner in interior point methods," Computational Optimization and Applications, Springer, vol. 86(1), pages 49-78, September.
  • Handle: RePEc:spr:coopap:v:86:y:2023:i:1:d:10.1007_s10589-023-00492-1
    DOI: 10.1007/s10589-023-00492-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-023-00492-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-023-00492-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Assefaw H. Gebremedhin & Arijit Tarafdar & Alex Pothen & Andrea Walther, 2009. "Efficient Computation of Sparse Hessians Using Coloring and Automatic Differentiation," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 209-223, May.
    2. Luciana Casacio & Aurelio R. L. Oliveira & Christiano Lyra, 2018. "Using groups in the splitting preconditioner computation for interior point methods," 4OR, Springer, vol. 16(4), pages 401-410, December.
    3. Luca Bergamaschi & Jacek Gondzio & Manolo Venturin & Giovanni Zilli, 2007. "Inexact constraint preconditioners for linear systems arising in interior point methods," Computational Optimization and Applications, Springer, vol. 36(2), pages 137-147, April.
    4. Jacek Gondzio, 2012. "Matrix-free interior point method," Computational Optimization and Applications, Springer, vol. 51(2), pages 457-480, March.
    5. Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
    6. Jacek Gondzio & Andreas Grothey, 2009. "Exploiting structure in parallel implementation of interior point methods for optimization," Computational Management Science, Springer, vol. 6(2), pages 135-160, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefania Bellavia & Valentina De Simone & Daniela di Serafino & Benedetta Morini, 2016. "On the update of constraint preconditioners for regularized KKT systems," Computational Optimization and Applications, Springer, vol. 65(2), pages 339-360, November.
    2. Yiran Cui & Keiichi Morikuni & Takashi Tsuchiya & Ken Hayami, 2019. "Implementation of interior-point methods for LP based on Krylov subspace iterative solvers with inner-iteration preconditioning," Computational Optimization and Applications, Springer, vol. 74(1), pages 143-176, September.
    3. Luciana Casacio & Aurelio R. L. Oliveira & Christiano Lyra, 2018. "Using groups in the splitting preconditioner computation for interior point methods," 4OR, Springer, vol. 16(4), pages 401-410, December.
    4. Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
    5. Manolo Rodriguez Heredia & Aurelio Ribeiro Leite Oliveira, 2020. "A new proposal to improve the early iterations in the interior point method," Annals of Operations Research, Springer, vol. 287(1), pages 185-208, April.
    6. Gondzio, Jacek, 2016. "Crash start of interior point methods," European Journal of Operational Research, Elsevier, vol. 255(1), pages 308-314.
    7. Rehfeldt, Daniel & Hobbie, Hannes & Schönheit, David & Koch, Thorsten & Möst, Dominik & Gleixner, Ambros, 2022. "A massively parallel interior-point solver for LPs with generalized arrowhead structure, and applications to energy system models," European Journal of Operational Research, Elsevier, vol. 296(1), pages 60-71.
    8. J. Gondzio & F. N. C. Sobral, 2019. "Quasi-Newton approaches to interior point methods for quadratic problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 93-120, September.
    9. Filippo Zanetti & Jacek Gondzio, 2023. "An Interior Point–Inspired Algorithm for Linear Programs Arising in Discrete Optimal Transport," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1061-1078, September.
    10. Jens Hübner & Martin Schmidt & Marc C. Steinbach, 2017. "A Distributed Interior-Point KKT Solver for Multistage Stochastic Optimization," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 612-630, November.
    11. Castro, Jordi & Escudero, Laureano F. & Monge, Juan F., 2023. "On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 268-285.
    12. Bittencourt, Tiberio & Ferreira, Orizon Pereira, 2015. "Local convergence analysis of Inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 28-38.
    13. Jens Hübner & Martin Schmidt & Marc C. Steinbach, 2020. "Optimization techniques for tree-structured nonlinear problems," Computational Management Science, Springer, vol. 17(3), pages 409-436, October.
    14. Fatemeh Marzbani & Akmal Abdelfatah, 2024. "Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-31, January.
    15. Bethany L. Nicholson & Wei Wan & Shivakumar Kameswaran & Lorenz T. Biegler, 2018. "Parallel cyclic reduction strategies for linear systems that arise in dynamic optimization problems," Computational Optimization and Applications, Springer, vol. 70(2), pages 321-350, June.
    16. Yu, Jianxi & Liu, Pei & Li, Zheng, 2021. "Data reconciliation of the thermal system of a double reheat power plant for thermal calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. de Groot, Oliver & Mazelis, Falk & Motto, Roberto & Ristiniemi, Annukka, 2021. "A toolkit for computing Constrained Optimal Policy Projections (COPPs)," Working Paper Series 2555, European Central Bank.
    18. Cosmin Petra & Mihai Anitescu, 2012. "A preconditioning technique for Schur complement systems arising in stochastic optimization," Computational Optimization and Applications, Springer, vol. 52(2), pages 315-344, June.
    19. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.
    20. Miles Lubin & J. Hall & Cosmin Petra & Mihai Anitescu, 2013. "Parallel distributed-memory simplex for large-scale stochastic LP problems," Computational Optimization and Applications, Springer, vol. 55(3), pages 571-596, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:86:y:2023:i:1:d:10.1007_s10589-023-00492-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.