IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v68y2017i2d10.1007_s10589-017-9919-4.html
   My bibliography  Save this article

An interior-point implementation developed and tuned for radiation therapy treatment planning

Author

Listed:
  • Sebastiaan Breedveld

    (Erasmus University Medical Center - Cancer Institute)

  • Bas Berg

    (Erasmus University Medical Center - Cancer Institute)

  • Ben Heijmen

    (Erasmus University Medical Center - Cancer Institute)

Abstract

While interior-point methods share the same fundamentals, the implementation determines the actual performance. In order to attain the highest efficiency, different applications may require differently tuned implementations. In this paper we describe an implementation specifically designed for optimisation in radiation therapy. These problems are large-scale nonlinear (and sometimes nonconvex) constrained optimisation problems, consisting of both sparse and dense data. Several application-specific properties are exploited to enhance efficiency. Permuting, tiling and mixed precision arithmetic allow the algorithm to optimally process the mixed dense and sparse data matrices (making this step 2.2 times faster, and overall runtime reduction of $$55\%$$ 55 % ) and scalability (16 threads resulted in a speed-up factor of 9.8 compared to singlethreaded performance, against a speed-up factor of 7.7 for the less optimised implementation). Predefined cost-functions are hard-coded and the computationally expensive second derivatives are written in canonical form, and combined if multiple cost-functions are defined for the same clinical structure. The derivatives are then computed using a scaled matrix–matrix product. A cheap initialisation strategy based on the background knowledge reduces the number of iterations by $$11\%$$ 11 % . We also propose a novel combined Mehrotra–Gondzio approach. The algorithm is extensively tested on a dataset consisting of 120 patients, distributed over 6 tumour sites/approaches. This test dataset is made publicly available.

Suggested Citation

  • Sebastiaan Breedveld & Bas Berg & Ben Heijmen, 2017. "An interior-point implementation developed and tuned for radiation therapy treatment planning," Computational Optimization and Applications, Springer, vol. 68(2), pages 209-242, November.
  • Handle: RePEc:spr:coopap:v:68:y:2017:i:2:d:10.1007_s10589-017-9919-4
    DOI: 10.1007/s10589-017-9919-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-017-9919-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-017-9919-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pagès, Adela & Gondzio, Jacek & Nabona, Narcís, 2009. "Warmstarting for interior point methods applied to the long-term power planning problem," European Journal of Operational Research, Elsevier, vol. 197(1), pages 112-125, August.
    2. Gondzio, Jacek & González-Brevis, Pablo & Munari, Pedro, 2013. "New developments in the primal–dual column generation technique," European Journal of Operational Research, Elsevier, vol. 224(1), pages 41-51.
    3. Dionne M. Aleman & H. Edwin Romeijn & James F. Dempsey, 2009. "A Response Surface Approach to Beam Orientation Optimization in Intensity-Modulated Radiation Therapy Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 62-76, February.
    4. Jacek Gondzio, 2012. "Matrix-free interior point method," Computational Optimization and Applications, Springer, vol. 51(2), pages 457-480, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filippo Zanetti & Jacek Gondzio, 2023. "An Interior Point–Inspired Algorithm for Linear Programs Arising in Discrete Optimal Transport," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1061-1078, September.
    2. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    3. Lim, Gino J. & Bard, Jonathan F., 2016. "Benders decomposition and an IP-based heuristic for selecting IMRT treatment beam anglesAuthor-Name: Lin, Sifeng," European Journal of Operational Research, Elsevier, vol. 251(3), pages 715-726.
    4. Almoustafa, Samira & Hanafi, Said & Mladenović, Nenad, 2013. "New exact method for large asymmetric distance-constrained vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 226(3), pages 386-394.
    5. Stefania Bellavia & Valentina De Simone & Daniela di Serafino & Benedetta Morini, 2016. "On the update of constraint preconditioners for regularized KKT systems," Computational Optimization and Applications, Springer, vol. 65(2), pages 339-360, November.
    6. Nicolau Andrés-Thió & Mario Andrés Muñoz & Kate Smith-Miles, 2022. "Bifidelity Surrogate Modelling: Showcasing the Need for New Test Instances," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3007-3022, November.
    7. Elhedhli, Samir & Naoum-Sawaya, Joe, 2015. "Improved branching disjunctions for branch-and-bound: An analytic center approach," European Journal of Operational Research, Elsevier, vol. 247(1), pages 37-45.
    8. Pedro Munari & Martin Savelsbergh, 2020. "A Column Generation-Based Heuristic for the Split Delivery Vehicle Routing Problem with Time Windows," SN Operations Research Forum, Springer, vol. 1(4), pages 1-24, December.
    9. Enrico Bettiol & Lucas Létocart & Francesco Rinaldi & Emiliano Traversi, 2020. "A conjugate direction based simplicial decomposition framework for solving a specific class of dense convex quadratic programs," Computational Optimization and Applications, Springer, vol. 75(2), pages 321-360, March.
    10. Gondzio, Jacek, 2016. "Crash start of interior point methods," European Journal of Operational Research, Elsevier, vol. 255(1), pages 308-314.
    11. H. Rocha & J. Dias & B. Ferreira & M. Lopes, 2013. "Selection of intensity modulated radiation therapy treatment beam directions using radial basis functions within a pattern search methods framework," Journal of Global Optimization, Springer, vol. 57(4), pages 1065-1089, December.
    12. Brendan O’Donoghue & Eric Chu & Neal Parikh & Stephen Boyd, 2016. "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1042-1068, June.
    13. Pedro Munari & Alfredo Moreno & Jonathan De La Vega & Douglas Alem & Jacek Gondzio & Reinaldo Morabito, 2019. "The Robust Vehicle Routing Problem with Time Windows: Compact Formulation and Branch-Price-and-Cut Method," Transportation Science, INFORMS, vol. 53(4), pages 1043-1066, July.
    14. Guillermo Cabrera-Guerrero & Andrew J. Mason & Andrea Raith & Matthias Ehrgott, 2018. "Pareto local search algorithms for the multi-objective beam angle optimisation problem," Journal of Heuristics, Springer, vol. 24(2), pages 205-238, April.
    15. Bouarab, Hocine & El Hallaoui, Issmail & Metrane, Abdelmoutalib & Soumis, François, 2017. "Dynamic constraint and variable aggregation in column generation," European Journal of Operational Research, Elsevier, vol. 262(3), pages 835-850.
    16. J. Gondzio & F. N. C. Sobral, 2019. "Quasi-Newton approaches to interior point methods for quadratic problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 93-120, September.
    17. A. Pessoa & R. Sadykov & E. Uchoa & F. Vanderbeck, 2018. "Automation and Combination of Linear-Programming Based Stabilization Techniques in Column Generation," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 339-360, May.
    18. Ploskas, Nikolaos & Samaras, Nikolaos, 2015. "Efficient GPU-based implementations of simplex type algorithms," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 552-570.
    19. Delal Dink & Mark Langer & Ronald Rardin & Joseph Pekny & Gintaras Reklaitis & Behlul Saka, 2012. "Intensity modulated radiation therapy with field rotation—a time-varying fractionation study," Health Care Management Science, Springer, vol. 15(2), pages 138-154, June.
    20. Lim, Gino J. & Cao, Wenhua, 2012. "A two-phase method for selecting IMRT treatment beam angles: Branch-and-Prune and local neighborhood search," European Journal of Operational Research, Elsevier, vol. 217(3), pages 609-618.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:68:y:2017:i:2:d:10.1007_s10589-017-9919-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.