IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v148y2003i2p323-334.html
   My bibliography  Save this article

An efficient simplex type algorithm for sparse and dense linear programs

Author

Listed:
  • Paparrizos, Konstantinos
  • Samaras, Nikolaos
  • Stephanides, George

Abstract

No abstract is available for this item.

Suggested Citation

  • Paparrizos, Konstantinos & Samaras, Nikolaos & Stephanides, George, 2003. "An efficient simplex type algorithm for sparse and dense linear programs," European Journal of Operational Research, Elsevier, vol. 148(2), pages 323-334, July.
  • Handle: RePEc:eee:ejores:v:148:y:2003:i:2:p:323-334
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(02)00400-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kurt M. Anstreicher & Tamás Terlaky, 1994. "A Monotonic Build-Up Simplex Algorithm for Linear Programming," Operations Research, INFORMS, vol. 42(3), pages 556-561, June.
    2. Uwe H. Suhl & Leena M. Suhl, 1990. "Computing Sparse LU Factorizations for Large-Scale Linear Programming Bases," INFORMS Journal on Computing, INFORMS, vol. 2(4), pages 325-335, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Paparrizos & Nikolaos Samaras & Angelo Sifaleras, 2015. "Exterior point simplex-type algorithms for linear and network optimization problems," Annals of Operations Research, Springer, vol. 229(1), pages 607-633, June.
    2. Ploskas, Nikolaos & Samaras, Nikolaos, 2015. "Efficient GPU-based implementations of simplex type algorithms," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 552-570.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Csizmadia, Zsolt & Illés, Tibor & Nagy, Adrienn, 2012. "The s-monotone index selection rules for pivot algorithms of linear programming," European Journal of Operational Research, Elsevier, vol. 221(3), pages 491-500.
    2. Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
    3. Ricardo Fukasawa & Laurent Poirrier, 2019. "Permutations in the Factorization of Simplex Bases," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 612-632, July.
    4. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.
    5. Adrienn Csizmadia & Zsolt Csizmadia & Tibor Illés, 2018. "Finiteness of the quadratic primal simplex method when s-monotone index selection rules are applied," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 535-550, September.
    6. István Maros & Gautam Mitra, 1998. "Strategies for Creating Advanced Bases for Large-Scale Linear Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 248-260, May.
    7. Konstantinos Paparrizos & Nikolaos Samaras & Angelo Sifaleras, 2015. "Exterior point simplex-type algorithms for linear and network optimization problems," Annals of Operations Research, Springer, vol. 229(1), pages 607-633, June.
    8. Robert E. Bixby, 2002. "Solving Real-World Linear Programs: A Decade and More of Progress," Operations Research, INFORMS, vol. 50(1), pages 3-15, February.
    9. Maros, Istvan & Haroon Khaliq, Mohammad, 2002. "Advances in design and implementation of optimization software," European Journal of Operational Research, Elsevier, vol. 140(2), pages 322-337, July.
    10. Qi Huangfu & J. Hall, 2015. "Novel update techniques for the revised simplex method," Computational Optimization and Applications, Springer, vol. 60(3), pages 587-608, April.
    11. Miles Lubin & J. Hall & Cosmin Petra & Mihai Anitescu, 2013. "Parallel distributed-memory simplex for large-scale stochastic LP problems," Computational Optimization and Applications, Springer, vol. 55(3), pages 571-596, July.
    12. Meszaros, Csaba, 1997. "The augmented system variant of IPMs in two-stage stochastic linear programming computation," European Journal of Operational Research, Elsevier, vol. 101(2), pages 317-327, September.
    13. Daniel E. Steffy & Kati Wolter, 2013. "Valid Linear Programming Bounds for Exact Mixed-Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 271-284, May.
    14. A. Swietanowski, 1995. "A Penalty Based Simplex Method for Linear Programming," Working Papers wp95005, International Institute for Applied Systems Analysis.
    15. Miles Lubin & Iain Dunning, 2015. "Computing in Operations Research Using Julia," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 238-248, May.
    16. J. Hall, 2010. "Towards a practical parallelisation of the simplex method," Computational Management Science, Springer, vol. 7(2), pages 139-170, April.
    17. Robert Ashford, 2007. "Mixed integer programming: A historical perspective with Xpress-MP," Annals of Operations Research, Springer, vol. 149(1), pages 5-17, February.
    18. Erling D. Andersen, 1999. "On Exploiting Problem Structure in a Basis Identification Procedure for Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 95-103, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:148:y:2003:i:2:p:323-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.