IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v166y2009i1p355-37310.1007-s10479-008-0476-1.html
   My bibliography  Save this article

Analysis of stochastic problem decomposition algorithms in computational grids

Author

Listed:
  • Jesús Latorre
  • Santiago Cerisola
  • Andrés Ramos
  • Rafael Palacios

Abstract

Stochastic programming usually represents uncertainty discretely by means of a scenario tree. This representation leads to an exponential growth of the size of stochastic mathematical problems when better accuracy is needed. Trying to solve the problem as a whole, considering all scenarios together, yields to huge memory requirements that surpass the capabilities of current computers. Thus, decomposition algorithms are employed to divide the problem into several smaller subproblems and to coordinate their solution in order to obtain the global optimum. This paper analyzes several decomposition strategies based on the classical Benders decomposition algorithm, and applies them in the emerging computational grid environments. Most decomposition algorithms are not able to take full advantage of all the computing power available in a grid system because of unavoidable dependencies inherent to the algorithms. However, a special decomposition method presented in this paper aims at reducing dependency among subproblems, to the point where all the subproblems can be sent simultaneously to the grid. All algorithms have been tested in a grid system, measuring execution times required to solve standard optimization problems and a real-size hydrothermal coordination problem. Numerical results are shown to confirm that this new method outperforms the classical ones when used in grid computing environments. Copyright Springer Science+Business Media, LLC 2009

Suggested Citation

  • Jesús Latorre & Santiago Cerisola & Andrés Ramos & Rafael Palacios, 2009. "Analysis of stochastic problem decomposition algorithms in computational grids," Annals of Operations Research, Springer, vol. 166(1), pages 355-373, February.
  • Handle: RePEc:spr:annopr:v:166:y:2009:i:1:p:355-373:10.1007/s10479-008-0476-1
    DOI: 10.1007/s10479-008-0476-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-008-0476-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-008-0476-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Ruszczynski, 1994. "On Augmented Lagrangian Decomposition Methods For Multistage Stochastic Programs," Working Papers wp94005, International Institute for Applied Systems Analysis.
    2. Robert E. Bixby & Alexander Martin, 2000. "Parallelizing the Dual Simplex Method," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 45-56, February.
    3. Ron Shamir, 1987. "The Efficiency of the Simplex Method: A Survey," Management Science, INFORMS, vol. 33(3), pages 301-334, March.
    4. Francisco Nogales & Francisco Prieto & Antonio Conejo, 2003. "A Decomposition Methodology Applied to the Multi-Area Optimal Power Flow Problem," Annals of Operations Research, Springer, vol. 120(1), pages 99-116, April.
    5. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    6. John M. Mulvey & Andrzej Ruszczyński, 1995. "A New Scenario Decomposition Method for Large-Scale Stochastic Optimization," Operations Research, INFORMS, vol. 43(3), pages 477-490, June.
    7. M. Dempster & R. Thompson, 1998. "Parallelization and aggregation ofnested Benders decomposition," Annals of Operations Research, Springer, vol. 81(0), pages 163-188, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Unai Aldasoro & Laureano Escudero & María Merino & Juan Monge & Gloria Pérez, 2015. "On parallelization of a stochastic dynamic programming algorithm for solving large-scale mixed 0–1 problems under uncertainty," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 703-742, October.
    2. Andre Luiz Diniz & Maria Elvira P. Maceira & Cesar Luis V. Vasconcellos & Debora Dias J. Penna, 2020. "A combined SDDP/Benders decomposition approach with a risk-averse surface concept for reservoir operation in long term power generation planning," Annals of Operations Research, Springer, vol. 292(2), pages 649-681, September.
    3. Babak Saleck Pay & Yongjia Song, 2020. "Partition-based decomposition algorithms for two-stage Stochastic integer programs with continuous recourse," Annals of Operations Research, Springer, vol. 284(2), pages 583-604, January.
    4. Fengqi You & Ignacio Grossmann, 2013. "Multicut Benders decomposition algorithm for process supply chain planning under uncertainty," Annals of Operations Research, Springer, vol. 210(1), pages 191-211, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Kiwiel & C.H. Rosa & A. Ruszczynski, 1995. "Decomposition via Alternating Linearization," Working Papers wp95051, International Institute for Applied Systems Analysis.
    2. V.I. Norkin & G.C. Pflug & A. Ruszczynski, 1996. "A Branch and Bound Method for Stochastic Global Optimization," Working Papers wp96065, International Institute for Applied Systems Analysis.
    3. Julia Higle & Suvrajeet Sen, 2006. "Multistage stochastic convex programs: Duality and its implications," Annals of Operations Research, Springer, vol. 142(1), pages 129-146, February.
    4. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    5. Jie Sun & Xinwei Liu, 2006. "Scenario Formulation of Stochastic Linear Programs and the Homogeneous Self-Dual Interior-Point Method," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 444-454, November.
    6. Dimitris Bertsimas & Omid Nohadani & Kwong Meng Teo, 2010. "Robust Optimization for Unconstrained Simulation-Based Problems," Operations Research, INFORMS, vol. 58(1), pages 161-178, February.
    7. Semih Atakan & Suvrajeet Sen, 2018. "A Progressive Hedging based branch-and-bound algorithm for mixed-integer stochastic programs," Computational Management Science, Springer, vol. 15(3), pages 501-540, October.
    8. Fudong Xie & Ce Wang & Housheng Duan, 2024. "Optimizing Fleet Size in Point-to-Point Shared Demand Responsive Transportation Service: A Network Decomposition Approach," Mathematics, MDPI, vol. 12(19), pages 1-20, September.
    9. T. Glenn Bailey & Paul A. Jensen & David P. Morton, 1999. "Response surface analysis of two‐stage stochastic linear programming with recourse," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(7), pages 753-776, October.
    10. Cooper, W. W. & Hemphill, H. & Huang, Z. & Li, S. & Lelas, V. & Sullivan, D. W., 1997. "Survey of mathematical programming models in air pollution management," European Journal of Operational Research, Elsevier, vol. 96(1), pages 1-35, January.
    11. Panos Parpas & Berç Rustem, 2007. "Computational Assessment of Nested Benders and Augmented Lagrangian Decomposition for Mean-Variance Multistage Stochastic Problems," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 239-247, May.
    12. Manuel Laguna, 1998. "Applying Robust Optimization to Capacity Expansion of One Location in Telecommunications with Demand Uncertainty," Management Science, INFORMS, vol. 44(11-Part-2), pages 101-110, November.
    13. Diana Barro & Elio Canestrelli, 2005. "Time and nodal decomposition with implicit non-anticipativity constraints in dynamic portfolio optimization," GE, Growth, Math methods 0510011, University Library of Munich, Germany.
    14. Siva Sankaran & Tung Bui, 2008. "An organizational model for transitional negotiations: concepts, design and applications," Group Decision and Negotiation, Springer, vol. 17(2), pages 157-173, March.
    15. Yan, Yongze & Hong, Liu & He, Xiaozheng & Ouyang, Min & Peeta, Srinivas & Chen, Xueguang, 2017. "Pre-disaster investment decisions for strengthening the Chinese railway system under earthquakes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 39-59.
    16. Lee, Chungmok, 2022. "A robust optimization approach with probe-able uncertainty," European Journal of Operational Research, Elsevier, vol. 296(1), pages 218-239.
    17. Samer Takriti & John R. Birge, 2000. "Lagrangian Solution Techniques and Bounds for Loosely Coupled Mixed-Integer Stochastic Programs," Operations Research, INFORMS, vol. 48(1), pages 91-98, February.
    18. X. W. Liu & M. Fukushima, 2006. "Parallelizable Preprocessing Method for Multistage Stochastic Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 327-346, December.
    19. Chia-Hung Chen & Shangyao Yan & Miawjane Chen, 2010. "Short-term manpower planning for MRT carriage maintenance under mixed deterministic and stochastic demands," Annals of Operations Research, Springer, vol. 181(1), pages 67-88, December.
    20. Zhang, S., 2002. "An interior-point and decomposition approach to multiple stage stochastic programming," Econometric Institute Research Papers EI 2002-35, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:166:y:2009:i:1:p:355-373:10.1007/s10479-008-0476-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.