IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v263y2022ics0378377422000014.html
   My bibliography  Save this article

Mobile drip irrigation (MDI): Clogging of high flow emitters caused by dragging of driplines on the ground and by solid particles in the irrigation water

Author

Listed:
  • Coelho, Rubens Duarte
  • Almeida, Alex Nunes de
  • Costa, Jéfferson de Oliveira
  • Pereira, Diego José de Sousa

Abstract

Mobile drip irrigation (MDI) system is interesting because it combines the efficiency of drip irrigation with the versatility of center-pivot irrigation; however, experimental information about clogging of MDI emitters caused by dragging of driplines on the ground and by solid particles in the irrigation water simultaneously are not presented to date in the literature. The objective of this research was to evaluate the performance of high-flow MDI drippers regarding the clogging resistance of emitters from dragging driplines over different soil types (experiment 1) and regarding clogging resistance from solid particles in the irrigation water (experiment 2). The research was carried out at the Irrigation Material Testing Laboratory at the University of São Paulo (USP), Brazil. In experiment 1, dragging of driplines over ground for 3 soil types, for different dripper models under dynamic and static conditions, were tested. In experiment 2, driplines resistance to clogging by solid particles in the irrigation water was evaluated. Dragging of driplines over ground did not cause significant clogging of emitters (A and B) for the in dynamic conditions, with average relative flow rate of drippers above 97%; however, under static conditions, after 30 days of resting in the field, the average relative flow rate of drippers was close to 55%. In experiment 2, dripper models B and C were analyzed and showed relative flow rate averages > 70% up to 300 h when evaluated in all pre-filter positions tested. Dripper models B and C proved to be resistant to blockage by solid particles smaller than 125 µm in the irrigation water, regardless of dripper pre-filter orientation. With particles up to 212 µm in diameter, dripper model B with pre-filter facing down showed a 25% flow rate reduction. Over the 500 h of evaluation, emitter B with the pre-filter vertical and facing upwards, had the highest average relative flows of 98.2% and 94.6%, respectively, while emitter C gave the best performance with the pre-filter in a diagonal position (84.4% of average relative flow). The results obtained in this paper, showed a better resistance of high-flow MDI drip emitters (3–8 L·h−1) to solid particles in the irrigation water. These results are important because shows an effective clogging alternative by using high-flow emitters on MDI systems, what is the main disadvantage of low-flow emitters on traditional fixed drip irrigation systems in irrigated fields around the world.

Suggested Citation

  • Coelho, Rubens Duarte & Almeida, Alex Nunes de & Costa, Jéfferson de Oliveira & Pereira, Diego José de Sousa, 2022. "Mobile drip irrigation (MDI): Clogging of high flow emitters caused by dragging of driplines on the ground and by solid particles in the irrigation water," Agricultural Water Management, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377422000014
    DOI: 10.1016/j.agwat.2022.107454
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422000014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Linlin & Wu, Wenyong & Xiao, Juan & Huang, Qiannan & Hu, Yaqi, 2021. "Effects of different drip irrigation modes on water use efficiency of pear trees in Northern China," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Al-Ghobari, Hussein M. & El-Marazky, Mohamed S. & Dewidar, Ahmed Z. & Mattar, Mohamed A., 2018. "Prediction of wind drift and evaporation losses from sprinkler irrigation using neural network and multiple regression techniques," Agricultural Water Management, Elsevier, vol. 195(C), pages 211-221.
    3. Hui, Xin & Zheng, Yudong & Yan, Haijun, 2021. "Water distributions of low-pressure sprinklers as affected by the maize canopy under a centre pivot irrigation system," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Li, Qiang & Song, Peng & Zhou, Bo & Xiao, Yang & Muhammad, Tahir & Liu, Zeyuan & Zhou, Hongxu & Li, Yunkai, 2019. "Mechanism of intermittent fluctuated water pressure on emitter clogging substances formation in drip irrigation system utilizing high sediment water," Agricultural Water Management, Elsevier, vol. 215(C), pages 16-24.
    5. Sadeghi, S.-H. & Peters, T. & Shafii, B. & Amini, M.Z. & Stöckle, C., 2017. "Continuous variation of wind drift and evaporation losses under a linear move irrigation system," Agricultural Water Management, Elsevier, vol. 182(C), pages 39-54.
    6. Oker, Tobias E. & Kisekka, Isaya & Sheshukov, Aleksey Y. & Aguilar, Jonathan & Rogers, Danny H., 2018. "Evaluation of maize production under mobile drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 11-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenji Liu & Chenyu Lei & Jie Li & Yangjuan Long & Chen Lu, 2024. "A Standardized Treatment Model for Head Loss of Farmland Filters Based on Interaction Factors," Agriculture, MDPI, vol. 14(5), pages 1-20, May.
    2. Hou, Peng & Ma, Changjian & Wang, Jia & Li, Yan & Zhang, Kai & Hou, Shance & Li, Jingzhi & Sun, Zeqiang & Xiao, Yang & Li, Yunkai, 2024. "Failure behavior of pressure compensating emitter under different operation pressures in drip irrigation systems," Agricultural Water Management, Elsevier, vol. 297(C).
    3. Lv, Chang & Niu, Wenquan & Du, Yadan & Sun, Jun & Dong, Aihong & Wu, Menglong & Mu, Fei & Zhu, Jinjin & Siddique, Kadambot H.M., 2024. "A meta-analysis of labyrinth channel emitter clogging characteristics under Yellow River water drip tape irrigation," Agricultural Water Management, Elsevier, vol. 291(C).
    4. do Amaral, Marcos Antonio Correa Matos & Coelho, Rubens Duarte & de Oliveira Costa, Jéfferson & de Sousa Pereira, Diego José & de Camargo, Antonio Pires, 2022. "Dripper clogging by soil particles entering lateral lines directly during irrigation network assembly in the field," Agricultural Water Management, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baifus Manke, Emanuele & Nörenberg, Bernardo Gomes & Faria, Lessandro Coll & Tarjuelo, José Maria & Colombo, Alberto & Chagas Neta, Maria Clotilde Carré & Parfitt, José Maria Barbat, 2019. "Wind drift and evaporation losses of a mechanical lateral-move irrigation system: Oscillating plate versus fixed spray plate sprinklers," Agricultural Water Management, Elsevier, vol. 225(C).
    2. do Amaral, Marcos Antonio Correa Matos & Coelho, Rubens Duarte & de Oliveira Costa, Jéfferson & de Sousa Pereira, Diego José & de Camargo, Antonio Pires, 2022. "Dripper clogging by soil particles entering lateral lines directly during irrigation network assembly in the field," Agricultural Water Management, Elsevier, vol. 273(C).
    3. Mattar, Mohamed A. & Roy, Dilip Kumar & Al-Ghobari, Hussein M. & Dewidar, Ahmed Z., 2022. "Machine learning and regression-based techniques for predicting sprinkler irrigation's wind drift and evaporation losses," Agricultural Water Management, Elsevier, vol. 265(C).
    4. Sarwar, Abid & Peters, R. Troy & Mehanna, Hani & Amini, Mohamma Zaman & Mohamed, Abdelmoneim Zakaria, 2019. "Evaluating water application efficiency of low and mid elevation spray application under changing weather conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 84-91.
    5. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    6. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    7. Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
    8. Shah, Wasi Ul Hassan & Hao, Gang & Yasmeen, Rizwana & Yan, Hong & Shen, Jintao & Lu, Yuting, 2023. "Role of China's agricultural water policy reforms and production technology heterogeneity on agriculture water usage efficiency and total factor productivity change," Agricultural Water Management, Elsevier, vol. 287(C).
    9. Jamei, Mehdi & Maroufpoor, Saman & Aminpour, Younes & Karbasi, Masoud & Malik, Anurag & Karimi, Bakhtiar, 2022. "Developing hybrid data-intelligent method using Boruta-random forest optimizer for simulation of nitrate distribution pattern," Agricultural Water Management, Elsevier, vol. 270(C).
    10. Wang, Jiaxin & He, Xinlin & Gong, Ping & Heng, Tong & Zhao, Danqi & Wang, Chunxia & Chen, Quan & Wei, Jie & Lin, Ping & Yang, Guang, 2024. "Response of fragrant pear quality and water productivity to lateral depth and irrigation amount," Agricultural Water Management, Elsevier, vol. 292(C).
    11. Ma, Changjian & Li, Mengyao & Hou, Peng & Wang, Xuejun & Sun, Zeqiang & Li, Yan & Xiao, Yang & Li, Yunkai, 2024. "Biofilm dynamic changes in drip irrigation emitter flow channels using reclaimed water," Agricultural Water Management, Elsevier, vol. 291(C).
    12. Lina Mi & Juncang Tian & Jianning Si & Yuchun Chen & Yinghai Li & Xinhe Wang, 2020. "Evolution of Groundwater in Yinchuan Oasis at the Upper Reaches of the Yellow River after Water-Saving Transformation and Its Driving Factors," IJERPH, MDPI, vol. 17(4), pages 1-17, February.
    13. Ruifeng Sun & Juanjuan Ma & Xihuan Sun & Lijian Zheng & Jiachang Guo, 2023. "Responses of the Leaf Water Physiology and Yield of Grapevine via Different Irrigation Strategies in Extremely Arid Areas," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    14. Lv, Chang & Niu, Wenquan & Du, Yadan & Sun, Jun & Dong, Aihong & Wu, Menglong & Mu, Fei & Zhu, Jinjin & Siddique, Kadambot H.M., 2024. "A meta-analysis of labyrinth channel emitter clogging characteristics under Yellow River water drip tape irrigation," Agricultural Water Management, Elsevier, vol. 291(C).
    15. Jin Guo & Lijian Zheng & Juanjuan Ma & Xufeng Li & Ruixia Chen, 2023. "Meta-Analysis of the Effect of Subsurface Irrigation on Crop Yield and Water Productivity," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    16. Zhu, Zhongrui & Li, Jiusheng & Zhu, Delan, 2024. "Influence of biotic and abiotic factors and water partitioning on the kinetic energy of sprinkler irrigation on a maize canopy," Agricultural Water Management, Elsevier, vol. 293(C).
    17. Hui, Xin & Lin, Xueji & Zhao, Yue & Xue, Mengyun & Zhuo, Yue & Guo, Hui & Xu, Yuncheng & Yan, Haijun, 2022. "Assessing water distribution characteristics of a variable-rate irrigation system," Agricultural Water Management, Elsevier, vol. 260(C).
    18. Chen, Rui & Li, Hong & Wang, Jian & Song, Zhuoyang, 2023. "Critical factors influencing soil runoff and erosion in sprinkler irrigation: Water application rate and droplet kinetic energy," Agricultural Water Management, Elsevier, vol. 283(C).
    19. Shen, Yan & Puig-Bargués, Jaume & Li, Mengyao & Xiao, Yang & Li, Qiang & Li, Yunkai, 2022. "Physical, chemical and biological emitter clogging behaviors in drip irrigation systems using high-sediment loaded water," Agricultural Water Management, Elsevier, vol. 270(C).
    20. Ke, Zengming & Liu, Xiaoli & Ma, Lihui & Feng, Zhe & Tu, Wen & Dong, Qin’ge & Jiao, Feng & Wang, Zhanli, 2021. "Rainstorm events increase risk of soil salinization in a loess hilly region of China," Agricultural Water Management, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377422000014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.