IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v290y2023ics0378377423004663.html
   My bibliography  Save this article

Increasing iron use efficiency by controlling emitter clogging in drip irrigation systems

Author

Listed:
  • Yuan, Huabin
  • Wang, Yue
  • Sun, Zeqiang
  • Shi, Ning
  • Li, Bowen
  • Ma, Changjian
  • Xiao, Yang
  • Li, Quanqi
  • Li, Yunkai

Abstract

Iron is one of the essential elements for crop growth. Traditional iron fertilizer application method by injecting iron into soil results in low utilization efficiency of iron fertilizer and a considerable amount of iron residue in the soil. Applying iron fertilizer by drip irrigation system could effectively improve the utilization efficiency of iron fertilizer. However, emitter clogging seriously restrict this technology. Here, the effects of different types of iron fertilizers [Ferrous sulfate (FeSO4); Ferric citrate (FC-Fe); Sodium ferric ethylenediamine tetraacetate (EDTA-Fe); And no iron fertilizer (CK)] on emitters clogging were assessed. The components of emitter clogging substances were detected through X-ray Diffraction and Fourier Transform Infrared Spectrometer. The results showed that different types of iron fertilizers significantly affected emitter clogging. EDTA-Fe application significantly mitigated emitter clogging, reduced the total amount of clogging substances by 49.6% on average, and increased the emitter flow rate by 21.0%. This is due to EDTA-Fe chelated scaling cations (e.g., Ca2+) in water through its functional groups, thereby reducing the contents of calcite, monohydrate calcite and dolomite. However, FeSO4 and FC-Fe application aggravated emitter clogging, and increased the total clogging substances by 52.3% and 105.8%, respectively. Surprisingly, iron precipitation was not detected in the clogging substances. FeSO4 and FC-Fe aggravated clogging mainly by increasing the formation of particulate fouling (e.g., muscovite) and chemical precipitation (e.g., calcite). This study suggested choosing EDTA-Fe in drip irrigation systems to reduce emitter clogging. The research results are of significance for improving the utilization efficiency of iron fertilizer and promoting the application of iron fertilizer drip irrigation technology.

Suggested Citation

  • Yuan, Huabin & Wang, Yue & Sun, Zeqiang & Shi, Ning & Li, Bowen & Ma, Changjian & Xiao, Yang & Li, Quanqi & Li, Yunkai, 2023. "Increasing iron use efficiency by controlling emitter clogging in drip irrigation systems," Agricultural Water Management, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:agiwat:v:290:y:2023:i:c:s0378377423004663
    DOI: 10.1016/j.agwat.2023.108601
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Yang & Ma, Changjian & Li, Mengyao & Zhangzhong, Lili & Song, Peng & Li, Yunkai, 2023. "Interaction and adaptation of phosphorus fertilizer and calcium ion in drip irrigation systems: the perspective of emitter clogging," Agricultural Water Management, Elsevier, vol. 282(C).
    2. Shen, Yan & Puig-Bargués, Jaume & Li, Mengyao & Xiao, Yang & Li, Qiang & Li, Yunkai, 2022. "Physical, chemical and biological emitter clogging behaviors in drip irrigation systems using high-sediment loaded water," Agricultural Water Management, Elsevier, vol. 270(C).
    3. Liu, Chunye & Wang, Rui & Wang, Wene & Hu, Xiaotao & Cheng, Yong & Liu, Fulai, 2021. "Effect of fertilizer solution concentrations on filter clogging in drip fertigation systems," Agricultural Water Management, Elsevier, vol. 250(C).
    4. Liu, Zeyuan & Ma, Changjian & Xiao, Yang & Lili, Zhangzhong & Muhammad, Tahir & Li, Yunkai, 2023. "Application of chelated fertilizers to mitigate organic-inorganic fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 285(C).
    5. Muhammad, Tahir & Zhou, Bo & Liu, Zeyuan & Chen, Xiuzhi & Li, Yunkai, 2021. "Effects of phosphorus-fertigation on emitter clogging in drip irrigation system with saline water," Agricultural Water Management, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Changjian & Li, Mengyao & Hou, Peng & Wang, Xuejun & Sun, Zeqiang & Li, Yan & Xiao, Yang & Li, Yunkai, 2024. "Biofilm dynamic changes in drip irrigation emitter flow channels using reclaimed water," Agricultural Water Management, Elsevier, vol. 291(C).
    2. Hou, Peng & Liu, Lu & Tahir, Muhammad & Li, Yan & Wang, Xuejun & Shi, Ning & Xiao, Yang & Ma, Changjian & Li, Yunkai, 2024. "Effect of fertilization on emitter clogging in drip irrigation using high sediment water: Perspective of sediment discharge capacity," Agricultural Water Management, Elsevier, vol. 294(C).
    3. Hou, Peng & Ma, Changjian & Wang, Jia & Li, Yan & Zhang, Kai & Hou, Shance & Li, Jingzhi & Sun, Zeqiang & Xiao, Yang & Li, Yunkai, 2024. "Failure behavior of pressure compensating emitter under different operation pressures in drip irrigation systems," Agricultural Water Management, Elsevier, vol. 297(C).
    4. Wang, Yayu & Xiao, Yang & Puig-Bargués, Jaume & Zhou, Bo & Liu, Zeyuan & Muhammad, Tahir & Liang, Hongbang & Maitusong, Memetmin & Wang, Zhenhua & Li, Yunkai, 2023. "Assessment of water quality ions in brackish water on drip irrigation system performance applied in saline areas," Agricultural Water Management, Elsevier, vol. 289(C).
    5. Wang, Yayu & Muhammad, Tahir & Liu, Zeyuan & Liang, Hongbang & Wang, Xingpeng & Wang, Zhenhua & Ma, Changjian & Li, Yunkai, 2022. "Chelated copper reduces yet manganese fertilizer increases calcium-silica fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 269(C).
    6. Wang, Yayu & Puig-Bargués, Jaume & Ma, Changjian & Xiao, Yang & Maitusong, Memetmin & Li, Yunkai, 2024. "Influence and selection of nitrogen and phosphorus compound fertilizers on emitter clogging using brackish water in drip irrigation systems," Agricultural Water Management, Elsevier, vol. 291(C).
    7. Xiao, Yang & Ma, Changjian & Li, Mengyao & Zhangzhong, Lili & Song, Peng & Li, Yunkai, 2023. "Interaction and adaptation of phosphorus fertilizer and calcium ion in drip irrigation systems: the perspective of emitter clogging," Agricultural Water Management, Elsevier, vol. 282(C).
    8. Liu, Zeyuan & Ma, Changjian & Xiao, Yang & Lili, Zhangzhong & Muhammad, Tahir & Li, Yunkai, 2023. "Application of chelated fertilizers to mitigate organic-inorganic fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 285(C).
    9. Ma, Changjian & Jiang, Cuiling & Li, Yan & Shi, Ning & Liu, Shenglin & Hu, Xinhui & Liu, Zhaohui & Sun, Zeqiang & Muhammad, Tahir, 2024. "Effect of lateral flushing on emitter clogging in drip irrigation using high-sediment water," Agricultural Water Management, Elsevier, vol. 293(C).
    10. Hou, Peng & Xiao, Yang & Muhammad, Tahir & Zhou, Bo & Song, Peng & Zhou, Yunpeng & Han, Siqi & Wen, Jiaxin & Li, Yunkai, 2023. "Multi-factorial failure of pressure-compensating emitters in drip fertigation systems: An in-situ sampling investigation," Agricultural Water Management, Elsevier, vol. 275(C).
    11. Muhammad, Tahir & Zhou, Bo & Puig-Bargu´es, Jaume & Ding, Can & Li, Shuqin & Manan, Irum & Zhou, Yunpeng & Liu, Zeyuan & Li, Yunkai, 2022. "Assessment of emitter clogging with multiple fouling and root intrusion in sub-surface drip irrigation during 5-year sugarcane growth," Agricultural Water Management, Elsevier, vol. 274(C).
    12. Wu, You & Si, Wei & Yan, Shicheng & Wu, Lifeng & Zhao, Wenju & Zhang, Jiale & Zhang, Fucang & Fan, Junliang, 2023. "Water consumption, soil nitrate-nitrogen residue and fruit yield of drip-irrigated greenhouse tomato under various irrigation levels and fertilization practices," Agricultural Water Management, Elsevier, vol. 277(C).
    13. Petit, Julien & García, Sílvia Mas & Molle, Bruno & Bendoula, Ryad & Ait-Mouheb, Nassim, 2022. "Methods for drip irrigation clogging detection, analysis and understanding: State of the art and perspectives," Agricultural Water Management, Elsevier, vol. 272(C).
    14. Rui Li & Qibiao Han & Conghui Dong & Xi Nan & Hao Li & Hao Sun & Hui Li & Peng Li & Yawei Hu, 2023. "Effect and Mechanism of Micro-Nano Aeration Treatment on a Drip Irrigation Emitter Based on Groundwater," Agriculture, MDPI, vol. 13(11), pages 1-17, October.
    15. Kaili Shi & Lili Zhangzhong & Furong Han & Shirui Zhang & Rui Guo & Xueying Yao, 2023. "Reducing Emitter Clogging in Drip Fertigation Systems by Magnetization Technology," Sustainability, MDPI, vol. 15(4), pages 1-11, February.
    16. Muhammad, Tahir & Xiao, Yang & Puig-Bargués, Jaume & Liu, Wenchao & Liu, Zeyuan & Chen, Xiuzhi & Li, Yunkai, 2021. "Effects of coupling multiple factors on CaCO3 fouling in agricultural saline water distribution systems," Agricultural Water Management, Elsevier, vol. 248(C).
    17. Wang, Yayu & Muhammad, Tahir & Liu, Zeyuan & Ma, Changjian & Zhang, Changsheng & Wang, Zhenhua & He, Xin & Li, Yunkai, 2022. "Compounding with humic acid improved nutrient uniformity in drip fertigation system using brackish water: The perspective of emitter clogging," Agricultural Water Management, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:290:y:2023:i:c:s0378377423004663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.