IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v231y2020ics0378377419305426.html
   My bibliography  Save this article

Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming

Author

Listed:
  • Li, Zhi
  • Fang, Gonghuan
  • Chen, Yaning
  • Duan, Weili
  • Mukanov, Yerbolat

Abstract

In the arid region of Central Asia, climate change leads not only to changes in water availability generated by glacier/snow melt in the alpine regions, but also to changes in water consumption. This paper evaluates agricultural water demand and water supply (represented by precipitation) for the five Central Asian countries (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan) under global warming conditions of 1.5 °C and 2.0 °C. As Central Asia is more sensitive to climate change compared to the global average, the temperature is predicted to rise by 1.7 °C and 2.6 °C and precipitation to increase by 9 % and 12 % in global warming scenarios of 1.5 °C and 2.0 °C, respectively. The average crop water requirement (CWR) is expected to increase by 13 mm and 19 mm per year, respectively, under the global warming scenarios of 1.5 °C and 2.0 °C. A widening gap between water supply and water demand is expected compared to the historical period (1976–2005) under global warming scenario of 2.0 °C. Under global warming of 2.0 °C, the anticipated water gaps between precipitation and CWR are projected to increase by 2.8 × 108 m3 and 1.5 × 108 m3 for the rainfed north Kazakhstan region and the irrigated Fergana region while the increase of precipitation could able to meet the increase in CWR under global warming of 1.5 °C. Investigating the water balance for major planting areas in water-limited Central Asia could provide a scientific basis for sustainable development of the entire region.

Suggested Citation

  • Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377419305426
    DOI: 10.1016/j.agwat.2020.106020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419305426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tobias Siegfried & Thomas Bernauer & Renaud Guiennet & Scott Sellars & Andrew Robertson & Justin Mankin & Peter Bauer-Gottwein & Andrey Yakovlev, 2012. "Will climate change exacerbate water stress in Central Asia?," Climatic Change, Springer, vol. 112(3), pages 881-899, June.
    2. Samuel Levis & Andrew Badger & Beth Drewniak & Cynthia Nevison & Xiaolin Ren, 2018. "CLMcrop yields and water requirements: avoided impacts by choosing RCP 4.5 over 8.5," Climatic Change, Springer, vol. 146(3), pages 501-515, February.
    3. Annina Sorg & Tobias Bolch & Markus Stoffel & Olga Solomina & Martin Beniston, 2012. "Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)," Nature Climate Change, Nature, vol. 2(10), pages 725-731, October.
    4. Wang, Jianqing & Liu, Xiaoyu & Cheng, Kun & Zhang, Xuhui & Li, Lianqing & Pan, Genxing, 2018. "Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation," Agricultural Water Management, Elsevier, vol. 197(C), pages 100-109.
    5. United Nations Educational, Scientific and Cultura UNESCO, 2018. "Nature-Based Solutions For Water," Working Papers id:12643, eSocialSciences.
    6. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.
    7. Pereira, L.S. & Paredes, P. & Sholpankulov, E.D. & Inchenkova, O.P. & Teodoro, P.R. & Horst, M.G., 2009. "Irrigation scheduling strategies for cotton to cope with water scarcity in the Fergana Valley, Central Asia," Agricultural Water Management, Elsevier, vol. 96(5), pages 723-735, May.
    8. Pavlova, Vera N. & Varcheva, Svetlana E. & Bokusheva, Raushan & Calanca, Pierluigi, 2014. "Modelling the effects of climate variability on spring wheat productivity in the steppe zone of Russia and Kazakhstan," Ecological Modelling, Elsevier, vol. 277(C), pages 57-67.
    9. Yang, Jia & Ren, Wei & Ouyang, Ying & Feng, Gary & Tao, Bo & Granger, Joshua J. & Poudel, Krishna P., 2019. "Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 217(C), pages 60-72.
    10. Xu, Hanqing & Tian, Zhan & He, Xiaogang & Wang, Jun & Sun, Laixiang & Fischer, Günther & Fan, Dongli & Zhong, Honglin & Wu, Wei & Pope, Edward & Kent, Chris & Liu, Junguo, 2019. "Future increases in irrigation water requirement challenge the water-food nexus in the northeast farming region of China," Agricultural Water Management, Elsevier, vol. 213(C), pages 594-604.
    11. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Jingxiu & Duan, Weili & Chen, Yaning & Dukhovny, Viktor A. & Sorokin, Denis & Li, Yupeng & Wang, Xuanxuan, 2022. "Comprehensive evaluation and sustainable development of water–energy–food–ecology systems in Central Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Zheng Wang & Yue Huang & Tie Liu & Chanjuan Zan & Yunan Ling & Chenyu Guo, 2022. "Analysis of the Water Demand-Supply Gap and Scarcity Index in Lower Amu Darya River Basin, Central Asia," IJERPH, MDPI, vol. 19(2), pages 1-18, January.
    3. Siyao Ma & Christopher Craig & Daniel Scott & Song Feng, 2021. "Global Climate Resources for Camping and Nature-Based Tourism," Tourism and Hospitality, MDPI, vol. 2(4), pages 1-15, December.
    4. Feng, Meiqing & Chen, Yaning & Duan, Weili & Fang, Gonghuan & li, Zhi & Jiao, Li & Sun, Fan & Li, Yupeng & Hou, Yifeng, 2022. "Comprehensive evaluation of the water-energy-food nexus in the agricultural management of the Tarim River Basin, Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    5. Ruan, Hongwei & Yu, Jingjie & Wang, Ping & Hao, Lingang & Wang, Zhenlong, 2023. "Relieving water stress by optimizing crop structure is a practicable approach in arid transboundary rivers of Central Asia," Agricultural Water Management, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    2. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Guangming Yang & Guofang Gong & Qingqing Gui, 2022. "Exploring the Spatial Network Structure of Agricultural Water Use Efficiency in China: A Social Network Perspective," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    4. Huili He & Rafiq Hamdi & Geping Luo & Peng Cai & Xiuliang Yuan & Miao Zhang & Piet Termonia & Philippe Maeyer & Alishir Kurban, 2022. "The summer cooling effect under the projected restoration of Aral Sea in Central Asia," Climatic Change, Springer, vol. 174(1), pages 1-21, September.
    5. Shan Zou & Abuduwaili Jilili & Weili Duan & Philippe De Maeyer & Tim Van de Voorde, 2019. "Human and Natural Impacts on the Water Resources in the Syr Darya River Basin, Central Asia," Sustainability, MDPI, vol. 11(11), pages 1-18, May.
    6. Kun Jia & Wei Zhang & Bingyan Xie & Xitong Xue & Feng Zhang & Dongrui Han, 2022. "Does Climate Change Increase Crop Water Requirements of Winter Wheat and Summer Maize in the Lower Reaches of the Yellow River Basin?," IJERPH, MDPI, vol. 19(24), pages 1-12, December.
    7. Chaofan Li & Qifei Han & Geping Luo & Chengyi Zhao & Shoubo Li & Yuangang Wang & Dongsheng Yu, 2018. "Effects of Cropland Conversion and Climate Change on Agrosystem Carbon Balance of China’s Dryland: A Typical Watershed Study," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    8. Christopher White & Trevor Tanton & David Rycroft, 2014. "The Impact of Climate Change on the Water Resources of the Amu Darya Basin in Central Asia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5267-5281, December.
    9. Wanlu Liu & Lulu Liu & Jiangbo Gao, 2020. "Adapting to climate change: gaps and strategies for Central Asia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1439-1459, December.
    10. Kuang, Naikun & Ma, Yuzhao & Hong, Shengzhe & Jiao, Fengli & Liu, Changyuan & Li, Quanqi & Han, Huifang, 2021. "Simulation of soil moisture dynamics, evapotranspiration, and water drainage of summer maize in response to different depths of subsoiling with RZWQM2," Agricultural Water Management, Elsevier, vol. 249(C).
    11. Hao Jin & Shuai Huang, 2021. "Are China’s Water Resources for Agriculture Sustainable? Evidence from Hubei Province," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    12. Iulii Didovets & Valentina Krysanova & Aliya Nurbatsina & Bijan Fallah & Viktoriya Krylova & Assel Saparova & Jafar Niyazov & Olga Kalashnikova & Fred Fokko Hattermann, 2024. "Attribution of current trends in streamflow to climate change for 12 Central Asian catchments," Climatic Change, Springer, vol. 177(1), pages 1-20, January.
    13. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    14. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Zhang, Shulin & Su, Xiaoling & Singh, Vijay P & Ayantobo, Olusola Olaitan & Xie, Juan, 2018. "Logarithmic Mean Divisia Index (LMDI) decomposition analysis of changes in agricultural water use: a case study of the middle reaches of the Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 208(C), pages 422-430.
    16. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    17. Himanshu, Sushil Kumar & Ale, Srinivasulu & Bordovsky, James & Darapuneni, Murali, 2019. "Evaluation of crop-growth-stage-based deficit irrigation strategies for cotton production in the Southern High Plains," Agricultural Water Management, Elsevier, vol. 225(C).
    18. El-Saied E. Metwaly & Hatim M. Al-Yasi & Esmat F. Ali & Hamada A. Farouk & Saad Farouk, 2022. "Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycinebetaine," Agriculture, MDPI, vol. 12(12), pages 1-16, December.
    19. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    20. R. Bryson Touchstone & Kathleen Sherman-Morris, 2016. "Vulnerability to prolonged cold: a case study of the Zeravshan Valley of Tajikistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1279-1300, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377419305426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.