Logarithmic Mean Divisia Index (LMDI) decomposition analysis of changes in agricultural water use: a case study of the middle reaches of the Heihe River basin, China
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2018.06.041
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
- Tianxiang Li & Tomas Baležentis & Lijuan Cao & Jing Zhu & Irena Kriščiukaitienė & Rasa Melnikienė, 2016. "Are the Changes in China’s Grain Production Sustainable: Extensive and Intensive Development by the LMDI Approach," Sustainability, MDPI, vol. 8(12), pages 1-24, November.
- De Bruyn, Sander M., 1997. "Explaining the environmental Kuznets curve: structural change and international agreements in reducing sulphur emissions," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 485-503, November.
- Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
- Feng, Le & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2017. "Dynamic forecasting of agricultural water footprint based on Markov Chain-a case study of the Heihe River Basin," Ecological Modelling, Elsevier, vol. 353(C), pages 150-157.
- Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2014.
"The water footprint of the Spanish agricultural sector: 1860–2010,"
Ecological Economics, Elsevier, vol. 108(C), pages 200-207.
- Rosa Duarte & Vicente Pinilla & Ana Serrano, 2014. "The water footprint of the spanish agricultural sector: 1860-2010," Documentos de Trabajo de la Sociedad de Estudios de Historia Agraria 1408, Sociedad de Estudios de Historia Agraria.
- Timma, Lelde & Zoss, Toms & Blumberga, Dagnija, 2016. "Life after the financial crisis. Energy intensity and energy use decomposition on sectorial level in Latvia," Applied Energy, Elsevier, vol. 162(C), pages 1586-1592.
- Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
- Chung, William & Kam, M.S. & Ip, C.Y., 2011. "A study of residential energy use in Hong Kong by decomposition analysis, 1990–2007," Applied Energy, Elsevier, vol. 88(12), pages 5180-5187.
- Wang, Wenwen & Liu, Xiao & Zhang, Ming & Song, Xuefeng, 2014. "Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China's energy consumption," Energy, Elsevier, vol. 67(C), pages 617-622.
- Sinton, Jonathan E. & Levine, Mark D., 1994. "Changing energy intensity in Chinese industry : The relatively importance of structural shift and intensity change," Energy Policy, Elsevier, vol. 22(3), pages 239-255, March.
- Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mengya Hua & Yuyan Zhou & Cailian Hao & Qiang Yan, 2023. "Analyzing the Drivers of Agricultural Irrigation Water Demand in Water-Scarce Areas: A Comparative Study of Two Regions with Different Levels of Irrigated Agricultural Development," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
- Chen, Yufeng & Miao, Jiafeng, 2023. "What Determines China’s Agricultural Non-Point Source Pollution? An Improved LMDI Decomposition Analysis," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 48(2), May.
- Li, Yuqin & Zhang, Lixiao & Zhang, Pengpeng & Li, Xinqing & Hao, Yan, 2024. "Water-energy-food nexus in China: An interregional comparison," Agricultural Water Management, Elsevier, vol. 301(C).
- Changfeng Shi & Hang Yuan & Qinghua Pang & Yangyang Zhang, 2020. "Research on the Decoupling of Water Resources Utilization and Agricultural Economic Development in Gansu Province from the Perspective of Water Footprint," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
- Qian Chen & Jaume Freire González & Donglan Zha, 2023. "The Gap between Expectations and Reality: Assessing the Water Rebound Effect in Chinese Agriculture," Working Papers 1415, Barcelona School of Economics.
- Jiang, Shan & Zhu, Yongnan & He, Guohua & Wang, Qingming & Lu, Yajing, 2020. "Factors influencing China’s non-residential power consumption: Estimation using the Kaya–LMDI methods," Energy, Elsevier, vol. 201(C).
- Liu, Qi & Niu, Jun & Wood, Jeffrey D. & Kang, Shaozhong, 2022. "Spatial optimization of cropping pattern in the upper-middle reaches of the Heihe River basin, Northwest China," Agricultural Water Management, Elsevier, vol. 264(C).
- Yanbin Li & Yuhang Han & Hongxing Li & Kai Feng, 2024. "Understanding Agricultural Water Consumption Trends in Henan Province: A Spatio-Temporal and Determinant Analysis Using Geospatial Models," Agriculture, MDPI, vol. 14(12), pages 1-20, December.
- Chenjun Zhang & Hailiang Huang & Changfeng Shi & Jingru Xu & Yung-ho Chiu, 2024. "Spatial pattern and driving factors for interprovincial water use in China: Based on SNA and LMDI," Energy & Environment, , vol. 35(4), pages 2198-2227, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
- Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
- Wang, Qiang & Jiang, Xue-ting & Li, Rongrong, 2017. "Comparative decoupling analysis of energy-related carbon emission from electric output of electricity sector in Shandong Province, China," Energy, Elsevier, vol. 127(C), pages 78-88.
- Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
- Qiang Wang & Rongrong Li & Rui Jiang, 2016. "Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
- Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
- Sun, Xiaoqi & Liu, Xiaojia, 2020. "Decomposition analysis of debt’s impact on China’s energy consumption," Energy Policy, Elsevier, vol. 146(C).
- Wang, Qiang & Li, Rongrong, 2016. "Journey to burning half of global coal: Trajectory and drivers of China׳s coal use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 341-346.
- Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
- Wang, Wenchao & Mu, Hailin & Kang, Xudong & Song, Rongchen & Ning, Yadong, 2010. "Changes in industrial electricity consumption in china from 1998 to 2007," Energy Policy, Elsevier, vol. 38(7), pages 3684-3690, July.
- Lin, Boqiang & Raza, Muhammad Yousaf, 2021. "Analysis of electricity consumption in Pakistan using index decomposition and decoupling approach," Energy, Elsevier, vol. 214(C).
- Ma, Hengyun & Oxley, Les & Gibson, John, 2010.
"China's energy economy: A survey of the literature,"
Economic Systems, Elsevier, vol. 34(2), pages 105-132, June.
- Hengyun Ma & Les Oxley, 2009. "China’s Energy Economy: A Survey of the Literature," Working Papers in Economics 09/02, University of Canterbury, Department of Economics and Finance.
- Perry Sadorsky, 2020. "Energy Related CO 2 Emissions before and after the Financial Crisis," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
- Hongguang Nie & René Kemp & Véronique Vasseur, 2020. "Exploring the Changing Gap of Residential Energy Consumption per Capita in China and the Netherlands: A Comparative Analysis of Driving Forces," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
- Wu, Yanrui, 2012.
"Energy intensity and its determinants in China's regional economies,"
Energy Policy, Elsevier, vol. 41(C), pages 703-711.
- Yanrui Wu, 2011. "Energy Intensity and its Determinants in China's Regional Economies," Economics Discussion / Working Papers 11-25, The University of Western Australia, Department of Economics.
- Ming-Ming Zhao & Rongrong Li, 2018. "Decoupling and decomposition analysis of carbon emissions from economic output in Chinese Guangdong Province: A sector perspective," Energy & Environment, , vol. 29(4), pages 543-555, June.
- Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
- Chong, Chin Hao & Tan, Wei Xin & Ting, Zhao Jia & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou, 2019. "The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Raza, Muhammad Yousaf & Lin, Boqiang, 2022. "Energy efficiency and factor productivity in Pakistan: Policy perspectives," Energy, Elsevier, vol. 247(C).
- Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
More about this item
Keywords
agricultural water use; Logarithmic Mean Divisia Index (LMDI); factor decomposition; middle reaches of the Heihe River basin; agricultural water management;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:208:y:2018:i:c:p:422-430. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.