IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v210y2018icp252-260.html
   My bibliography  Save this article

Simulation of water balance in a maize field under film-mulching drip irrigation

Author

Listed:
  • He, Qinsi
  • Li, Sien
  • Kang, Shaozhong
  • Yang, Hanbo
  • Qin, Shujing

Abstract

Film-mulching drip irrigation technology has been widely promoted and used in arid regions. However, few studies have simulated the water balance process under film-mulching drip irrigation. In our study, the water movement in different soil layers and the distributions of evaporation and transpiration were evaluated using the HYDRUS-2D model. Long-term continuous observations of evapotranspiration, soil evaporation, crop transpiration and soil moisture in a maize field under film-mulching drip irrigation were conducted using an eddy covariance system, micro-lysimeters, stem-flow gauges and soil water sensors from 2014 to 2016 in northwest China. Experimental data were collected to calibrate and validate the model. Results showed that the accuracy of HYDRUS-2D was satisfactory in deep soil layers and that the RMSEs (root mean square errors) of the 20 cm, 40 cm, 60 cm and 80 cm soil layers were 0.022 cm3 cm−3, 0.018 cm3 cm−3, 0.014 cm3 cm−3 and 0.010 cm3 cm−3, respectively. Thus, the model could be improved to better simulate soil water in surface soil layers. The results suggest that HYDRUS-2D can generally be used to simulate the actual evaporation (Ea), transpiration (Ta) and evapotranspiration (ETa) in a maize field under film-mulching drip irrigation, with the REs (relative errors) of 1.7%, -11.06% and -8.27%, respectively. The simulation error of ETa mainly stemmed from the simulation error of Ta, and the error contribution was 91.02%. Therefore, further studies that consider the effects of film-mulching drip irrigation are needed to improve the root water uptake and the ET calculation modules and enhance the accuracy of the HYDRUS-2D model.

Suggested Citation

  • He, Qinsi & Li, Sien & Kang, Shaozhong & Yang, Hanbo & Qin, Shujing, 2018. "Simulation of water balance in a maize field under film-mulching drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 252-260.
  • Handle: RePEc:eee:agiwat:v:210:y:2018:i:c:p:252-260
    DOI: 10.1016/j.agwat.2018.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418304384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanson, Blaine R. & Simunek, Jirka & Hopmans, Jan W., 2006. "Evaluation of urea-ammonium-nitrate fertigation with drip irrigation using numerical modeling," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 102-113, November.
    2. Kandelous, Maziar M. & Simunek, Jirí, 2010. "Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 97(7), pages 1070-1076, July.
    3. Romic, D. & Romic, M. & Borosic, J. & Poljak, M., 2003. "Mulching decreases nitrate leaching in bell pepper (Capsicum annuum L.) cultivation," Agricultural Water Management, Elsevier, vol. 60(2), pages 87-97, May.
    4. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng, 2016. "Can the drip irrigation under film mulch reduce crop evapotranspiration and save water under the sufficient irrigation condition?," Agricultural Water Management, Elsevier, vol. 177(C), pages 128-137.
    5. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    6. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    7. Tiwari, K. N. & Singh, Ajai & Mal, P. K., 2003. "Effect of drip irrigation on yield of cabbage (Brassica oleracea L. var. capitata) under mulch and non-mulch conditions," Agricultural Water Management, Elsevier, vol. 58(1), pages 19-28, January.
    8. Li, Jiusheng & Zhang, Jianjun & Rao, Minjie, 2004. "Wetting patterns and nitrogen distributions as affected by fertigation strategies from a surface point source," Agricultural Water Management, Elsevier, vol. 67(2), pages 89-104, June.
    9. Roberts, Trenton L. & White, Scott A. & Warrick, Arthur W. & Thompson, Thomas L., 2008. "Tape depth and germination method influence patterns of salt accumulation with subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 95(6), pages 669-677, June.
    10. Ajdary, Khalil & Singh, D.K. & Singh, A.K. & Khanna, Manoj, 2007. "Modelling of nitrogen leaching from experimental onion field under drip fertigation," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 15-28, April.
    11. Xi, Benye & Wang, Ye & Jia, Liming & Bloomberg, Mark & Li, Guangde & Di, Nan, 2013. "Characteristics of fine root system and water uptake in a triploid Populus tomentosa plantation in the North China Plain: Implications for irrigation water management," Agricultural Water Management, Elsevier, vol. 117(C), pages 83-92.
    12. Xi, Benye & Bloomberg, Mark & Watt, Michael S. & Wang, Ye & Jia, Liming, 2016. "Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain," Agricultural Water Management, Elsevier, vol. 176(C), pages 243-254.
    13. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Tong, Ling & Ding, Risheng & Du, Taisheng & Li, Sien & Zhang, Xiaotao, 2017. "Performance of AquaCrop and SIMDualKc models in evapotranspiration partitioning on full and deficit irrigated maize for seed production under plastic film-mulch in an arid region of China," Agricultural Systems, Elsevier, vol. 151(C), pages 20-32.
    14. Mailhol, Jean Claude & Ruelle, Pierre & Walser, Sabine & Schütze, Niels & Dejean, Cyril, 2011. "Analysis of AET and yield predictions under surface and buried drip irrigation systems using the Crop Model PILOTE and Hydrus-2D," Agricultural Water Management, Elsevier, vol. 98(6), pages 1033-1044, April.
    15. Phogat, V. & Skewes, Mark A. & Mahadevan, M. & Cox, J.W., 2013. "Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    2. Chen, Ning & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Ding, Zongjiang & Peng, Zunyuan, 2019. "Evaluating the effects of biodegradable film mulching on soil water dynamics in a drip-irrigated field," Agricultural Water Management, Elsevier, vol. 226(C).
    3. Liyuan Bo & Xiaomin Mao & Yali Wang, 2022. "Assessing the Applicability of Biodegradable Film Mulching in Northwest China Based on Comprehensive Benefits Study," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    4. Wang, Yahui & Li, Sien & Qin, Shujing & Guo, Hui & Yang, Danni & Lam, Hon-Ming, 2020. "How can drip irrigation save water and reduce evapotranspiration compared to border irrigation in arid regions in northwest China," Agricultural Water Management, Elsevier, vol. 239(C).
    5. Zhao, Yin & Mao, Xiaomin & Shukla, Manoj K. & Tian, Fei & Hou, Mengjie & Zhang, Tong & Li, Sien, 2021. "How does film mulching modify available energy, evapotranspiration, and crop coefficient during the seed–maize growing season in northwest China?," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Ning, Songrui & Zhou, Beibei & Shi, Jianchu & Wang, Quanjiu, 2021. "Soil water/salt balance and water productivity of typical irrigation schedules for cotton under film mulched drip irrigation in northern Xinjiang," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Guo, Hui & Li, Sien & Kang, Shaozhong & Du, Taisheng & Liu, Wenfeng & Tong, Ling & Hao, Xinmei & Ding, Risheng, 2022. "Comparison of several models for estimating gross primary production of drip-irrigated maize in arid regions," Ecological Modelling, Elsevier, vol. 468(C).
    8. Zhang, Junpeng & Li, Kejiang & Gao, Yang & Feng, Di & Zheng, Chunlian & Cao, Caiyun & Sun, Jingsheng & Dang, Hongkai & Hamani, Abdoul Kader Mounkaila, 2022. "Evaluation of saline water irrigation on cotton growth and yield using the AquaCrop crop simulation model," Agricultural Water Management, Elsevier, vol. 261(C).
    9. Yu, Qihua & Kang, Shaozhong & Zhang, Lu & Hu, Shunjun & Li, Yunfeng & Parsons, David, 2023. "Incorporating new functions into the WAVES model, to better simulate cotton production under film mulching and severe salinity," Agricultural Water Management, Elsevier, vol. 288(C).
    10. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    11. Zhang, Jinxia & Du, Liangliang & Xing, Zisheng & Zhang, Rui & Li, Fuqiang & Zhong, Tao & Ren, Fangfang & Yin, Meng & Ding, Lin & Liu, Xingrong, 2023. "Effects of dual mulching with wheat straw and plastic film under three irrigation regimes on soil nutrients and growth of edible sunflower," Agricultural Water Management, Elsevier, vol. 288(C).
    12. Yi, Jun & Li, Huijie & Zhao, Ying & Shao, Ming'an & Zhang, Hailin & Liu, Muxing, 2022. "Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region," Agricultural Water Management, Elsevier, vol. 265(C).
    13. Wang, Chunyu & Li, Sien & Wu, Mousong & Zhang, Wenxin & Guo, Zhenyu & Huang, Siyu & Yang, Danni, 2023. "Co-regulation of temperature and moisture in the irrigated agricultural ecosystem productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    14. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azad, Nasrin & Behmanesh, Javad & Rezaverdinejad, Vahid & Abbasi, Fariborz & Navabian, Maryam, 2018. "Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements," Agricultural Water Management, Elsevier, vol. 208(C), pages 344-356.
    2. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    3. Arbat, G. & Roselló, A. & Domingo Olivé, F. & Puig-Bargués, J. & González Llinàs, E. & Duran-Ros, M. & Pujol, J. & Ramírez de Cartagena, F., 2013. "Soil water and nitrate distribution under drip irrigated corn receiving pig slurry," Agricultural Water Management, Elsevier, vol. 120(C), pages 11-22.
    4. Nayebloie, Fatemeh & Kouchakzadeh, Mahdi & Ebrahimi, Kumars & Homaee, Mahdi & Abbasi, Fariborz, 2022. "Improving fertigation efficiency by numerical modelling in a lettuce subsurface drip irrigation farm," Agricultural Water Management, Elsevier, vol. 270(C).
    5. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    6. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    7. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    8. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    9. Jamei, Mehdi & Maroufpoor, Saman & Aminpour, Younes & Karbasi, Masoud & Malik, Anurag & Karimi, Bakhtiar, 2022. "Developing hybrid data-intelligent method using Boruta-random forest optimizer for simulation of nitrate distribution pattern," Agricultural Water Management, Elsevier, vol. 270(C).
    10. Ravikumar, V. & Vijayakumar, G. & Simunek, J. & Chellamuthu, S. & Santhi, R. & Appavu, K., 2011. "Evaluation of fertigation scheduling for sugarcane using a vadose zone flow and transport model," Agricultural Water Management, Elsevier, vol. 98(9), pages 1431-1440, July.
    11. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    12. He, Yuelin & Xi, Benye & Li, Guangde & Wang, Ye & Jia, Liming & Zhao, Dehai, 2021. "Influence of drip irrigation, nitrogen fertigation, and precipitation on soil water and nitrogen distribution, tree seasonal growth and nitrogen uptake in young triploid poplar (Populus tomentosa) pla," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Zahra Jafari & Sayed Hamid Matinkhah & Mohammad Reza Mosaddeghi, 2022. "Wetting Patterns in a Subsurface Irrigation System Using Reservoirs of Different Permeabilities: Experimental and HYDRUS-2D/3D Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5335-5352, November.
    14. Callau-Beyer, Ana Claudia & Mburu, Martin Mungai & Weßler, Caspar-Friedrich & Amer, Nasser & Corbel, Anne-Laure & Wittnebel, Mareille & Böttcher, Jürgen & Bachmann, Jörg & Stützel, Hartmut, 2024. "Effect of high frequency subsurface drip fertigation on plant growth and agronomic nitrogen use efficiency of red cabbage," Agricultural Water Management, Elsevier, vol. 297(C).
    15. Phogat, V. & Pitt, T. & Cox, J.W. & Šimůnek, J. & Skewes, M.A., 2018. "Soil water and salinity dynamics under sprinkler irrigated almond exposed to a varied salinity stress at different growth stages," Agricultural Water Management, Elsevier, vol. 201(C), pages 70-82.
    16. Karandish, Fatemeh & Šimůnek, Jiří, 2017. "Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS," Agricultural Water Management, Elsevier, vol. 193(C), pages 174-190.
    17. Grecco, Katarina L. & Miranda, Jarbas H. de & Silveira, Laís K. & van Genuchten, Martinus Th., 2019. "HYDRUS-2D simulations of water and potassium movement in drip irrigated tropical soil container cultivated with sugarcane," Agricultural Water Management, Elsevier, vol. 221(C), pages 334-347.
    18. Liu, Chunye & Wang, Rui & Wang, Wene & Hu, Xiaotao & Cheng, Yong & Liu, Fulai, 2021. "Effect of fertilizer solution concentrations on filter clogging in drip fertigation systems," Agricultural Water Management, Elsevier, vol. 250(C).
    19. Siyal, A.A. & van Genuchten, M. Th. & Skaggs, T.H., 2013. "Solute transport in a loamy soil under subsurface porous clay pipe irrigation," Agricultural Water Management, Elsevier, vol. 121(C), pages 73-80.
    20. Amin, M.G. Mostofa & Šimůnek, Jirka & Lægdsmand, Mette, 2014. "Simulation of the redistribution and fate of contaminants from soil-injected animal slurry," Agricultural Water Management, Elsevier, vol. 131(C), pages 17-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:210:y:2018:i:c:p:252-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.