Assessing the Applicability of Biodegradable Film Mulching in Northwest China Based on Comprehensive Benefits Study
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lin, Wen & Liu, Wenzhao & Zhou, Shanshan & Liu, Chunfen, 2019. "Influence of plastic film mulch on maize water use efficiency in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
- Anwar Abduwaiti & Xiaowei Liu & Changrong Yan & Yinghao Xue & Tuo Jin & Hongqi Wu & Pengcheng He & Zhe Bao & Qin Liu, 2021. "Testing Biodegradable Films as Alternatives to Plastic-Film Mulching for Enhancing the Yield and Economic Benefits of Processed Tomato in Xinjiang Region," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
- Lu Deng & Yang Yu & Haiyan Zhang & Qian Wang & Ruide Yu, 2019. "The Effects of Biodegradable Mulch Film on the Growth, Yield, and Water Use Efficiency of Cotton and Maize in an Arid Region," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
- Wang, Zhenhua & Wu, Qiang & Fan, Bihang & Zheng, Xurong & Zhang, Jinzhu & Li, Wenhao & Guo, Li, 2019. "Effects of mulching biodegradable films under drip irrigation on soil hydrothermal conditions and cotton (Gossypium hirsutum L.) yield," Agricultural Water Management, Elsevier, vol. 213(C), pages 477-485.
- Liao, Yang & Cao, Hong-Xia & Xue, Wen-Kai & Liu, Xing, 2021. "Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples," Agricultural Water Management, Elsevier, vol. 243(C).
- Li, Rong & Hou, Xianqing & Jia, Zhikuan & Han, Qingfang & Ren, Xiaolong & Yang, Baoping, 2013. "Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 116(C), pages 101-109.
- He, Qinsi & Li, Sien & Kang, Shaozhong & Yang, Hanbo & Qin, Shujing, 2018. "Simulation of water balance in a maize field under film-mulching drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 252-260.
- Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
- Zong, Rui & Wang, Zhenhua & Zhang, Jinzhu & Li, Wenhao, 2021. "The response of photosynthetic capacity and yield of cotton to various mulching practices under drip irrigation in Northwest China," Agricultural Water Management, Elsevier, vol. 249(C).
- Yin, Minhua & Li, Yuannong & Fang, Heng & Chen, Pengpeng, 2019. "Biodegradable mulching film with an optimum degradation rate improves soil environment and enhances maize growth," Agricultural Water Management, Elsevier, vol. 216(C), pages 127-137.
- Kang, Shaozhong & Gu, Binjie & Du, Taisheng & Zhang, Jianhua, 2003. "Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region," Agricultural Water Management, Elsevier, vol. 59(3), pages 239-254, April.
- Gu, Xiaobo & Cai, Huanjie & Fang, Heng & Chen, Pengpeng & Li, Yupeng & Li, Yuannong, 2021. "Soil hydro-thermal characteristics, maize yield and water use efficiency as affected by different biodegradable film mulching patterns in a rain-fed semi-arid area of China," Agricultural Water Management, Elsevier, vol. 245(C).
- Zhong, Yun & Fei, Liangjun & Li, Yibo & Zeng, Jian & Dai, Zhiguang, 2019. "Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 222(C), pages 221-230.
- Zhao, Yin & Mao, Xiaomin & Shukla, Manoj K. & Tian, Fei & Hou, Mengjie & Zhang, Tong & Li, Sien, 2021. "How does film mulching modify available energy, evapotranspiration, and crop coefficient during the seed–maize growing season in northwest China?," Agricultural Water Management, Elsevier, vol. 245(C).
- Si, Tong & Wang, Chunbo & Liu, Ruiqi & Guo, Yusheng & Yue, Shuang & Ren, Yujie, 2020. "Multi-criteria comprehensive energy efficiency assessment based on fuzzy-AHP method: A case study of post-treatment technologies for coal-fired units," Energy, Elsevier, vol. 200(C).
- Zhang, Yanqun & Wang, Jiandong & Gong, Shihong & Xu, Di & Sui, Juan & Wu, Zhongdong & Mo, Yan, 2018. "Effects of film mulching on evapotranspiration, yield and water use efficiency of a maize field with drip irrigation in Northeastern China," Agricultural Water Management, Elsevier, vol. 205(C), pages 90-99.
- Heindl, Anna-Barbara & Liefner, Ingo, 2019. "The Analytic Hierarchy Process as a methodological contribution to improve regional innovation system research: Explored through comparative research in China," Technology in Society, Elsevier, vol. 59(C).
- Sun, Tao & Li, Geng & Ning, Tang-Yuan & Zhang, Zhi-Meng & Mi, Qing-Hua & Lal, Rattan, 2018. "Suitability of mulching with biodegradable film to moderate soil temperature and moisture and to increase photosynthesis and yield in peanut," Agricultural Water Management, Elsevier, vol. 208(C), pages 214-223.
- Guanghua Yin & Jian Gu & Fasheng Zhang & Liang Hao & Peifei Cong & Zuoxin Liu, 2014. "Maize Yield Response to Water Supply and Fertilizer Input in a Semi-Arid Environment of Northeast China," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-6, January.
- Wang, Haidong & Cheng, Minghui & Zhang, Shaohui & Fan, Junliang & Feng, Hao & Zhang, Fucang & Wang, Xiukang & Sun, Lijun & Xiang, Youzhen, 2021. "Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods," Agricultural Water Management, Elsevier, vol. 256(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhiwen Song & Lei Zhao & Junguo Bi & Qingyun Tang & Guodong Wang & Yuxiang Li, 2024. "Classification of Degradable Mulch Films and Their Promotional Effects and Limitations on Agricultural Production," Agriculture, MDPI, vol. 14(8), pages 1-19, July.
- Zhao, Yin & Mao, Xiaomin & Shukla, Manoj K. & Tian, Fei & Hou, Mengjie & Zhang, Tong & Li, Sien, 2021. "How does film mulching modify available energy, evapotranspiration, and crop coefficient during the seed–maize growing season in northwest China?," Agricultural Water Management, Elsevier, vol. 245(C).
- Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
- Zheng, Jing & Fan, Junliang & Zhang, Fucang & Zhuang, Qianlai, 2021. "Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
- Yin, Tao & Yao, Zhipeng & Yan, Changrong & Liu, Qi & Ding, Xiaodong & He, Wenqing, 2023. "Maize yield reduction is more strongly related to soil moisture fluctuation than soil temperature change under biodegradable film vs plastic film mulching in a semi-arid region of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
- Chen, Ning & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Ding, Zongjiang & Peng, Zunyuan, 2019. "Evaluating the effects of biodegradable film mulching on soil water dynamics in a drip-irrigated field," Agricultural Water Management, Elsevier, vol. 226(C).
- Zong, Rui & Wang, Zhenhua & Zhang, Jinzhu & Li, Wenhao, 2021. "The response of photosynthetic capacity and yield of cotton to various mulching practices under drip irrigation in Northwest China," Agricultural Water Management, Elsevier, vol. 249(C).
- Minhua, Yin & Yanlin, Ma & Yanxia, Kang & Qiong, Jia & Guangping, Qi & Jinghai, Wang & Changkun, Yang & Jianxiong, Yu, 2022. "Optimized farmland mulching improves alfalfa yield and water use efficiency based on meta-analysis and regression analysis," Agricultural Water Management, Elsevier, vol. 267(C).
- Chu, Xiaosheng & Flerchinger, Gerald N. & Ma, Liwang & Fang, Quanxiao & Malone, Robert W. & Yu, Qiang & He, Jianqiang & Wang, Naijiang & Feng, Hao & Zou, Yufeng, 2022. "Development of RZ-SHAW for simulating plastic mulch effects on soil water, soil temperature, and surface energy balance in a maize field," Agricultural Water Management, Elsevier, vol. 269(C).
- Anwar Abduwaiti & Xiaowei Liu & Changrong Yan & Yinghao Xue & Tuo Jin & Hongqi Wu & Pengcheng He & Zhe Bao & Qin Liu, 2021. "Testing Biodegradable Films as Alternatives to Plastic-Film Mulching for Enhancing the Yield and Economic Benefits of Processed Tomato in Xinjiang Region," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
- Lian, Yanhao & Ali, Shahzad & Zhang, Xudong & Wang, Tianlu & Liu, Qi & Jia, Qianmin & Jia, Zhikuan & Han, Qingfang, 2016. "Nutrient and tillage strategies to increase grain yield and water use efficiency in semi-arid areas," Agricultural Water Management, Elsevier, vol. 178(C), pages 137-147.
- Wang, Tianyu & Wang, Zhenhua & Guo, Li & Zhang, Jinzhu & Li, Wenhao & He, Huaijie & Zong, Rui & Wang, Dongwang & Jia, Zhecheng & Wen, Yue, 2021. "Experiences and challenges of agricultural development in an artificial oasis: A review," Agricultural Systems, Elsevier, vol. 193(C).
- Xiangxiang Wang & Zhilong Cheng & Xin Cheng & Quanjiu Wang, 2022. "Effects of Surface Mulching on the Growth and Water Consumption of Maize," Agriculture, MDPI, vol. 12(11), pages 1-12, November.
- Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).
- Gao, Xuhua & Xie, Dong & Yang, Chong, 2021. "Effects of a PLA/PBAT biodegradable film mulch as a replacement of polyethylene film and their residues on crop and soil environment," Agricultural Water Management, Elsevier, vol. 255(C).
- Feng, Yu & Hao, Weiping & Gao, Lili & Li, Haoru & Gong, Daozhi & Cui, Ningbo, 2019. "Comparison of maize water consumption at different scales between mulched and non-mulched croplands," Agricultural Water Management, Elsevier, vol. 216(C), pages 315-324.
- Zhao, Peng & Kang, Shaozhong & Li, Sien & Ding, Risheng & Tong, Ling & Du, Taisheng, 2018. "Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture," Agricultural Water Management, Elsevier, vol. 197(C), pages 19-33.
- Wang, Zeyi & Zhang, Hengjia & Wang, Yingying & Wang, Yong & Lei, Lian & Liang, Chao & Wang, Yucai, 2023. "Deficit irrigation decision-making of indigowoad root based on a model coupling fuzzy theory and grey relational analysis," Agricultural Water Management, Elsevier, vol. 275(C).
- Wang, Yunfei & Cai, Huanjie & Yu, Lianyu & Peng, Xiongbiao & Xu, Jiatun & Wang, Xiaowen, 2020. "Evapotranspiration partitioning and crop coefficient of maize in dry semi-humid climate regime," Agricultural Water Management, Elsevier, vol. 236(C).
- Huang, Fangyuan & Liu, Zihan & Li, Zhaoyang & Wang, Bingfan & Zhang, Peng & Jia, ZhiKuan, 2022. "Is biodegradable film an alternative to polyethylene plastic film for improving maize productivity in rainfed agricultural areas? — Evidence from field experiments," Agricultural Water Management, Elsevier, vol. 272(C).
More about this item
Keywords
biodegradable film; deficit irrigation; yield; economic benefits; sustainable agriculture; AHP-GRA;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10584-:d:897466. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.