IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i14d10.1007_s11269-022-03226-w.html
   My bibliography  Save this article

Wetting Patterns in a Subsurface Irrigation System Using Reservoirs of Different Permeabilities: Experimental and HYDRUS-2D/3D Modeling

Author

Listed:
  • Zahra Jafari

    (Isfahan University of Technology)

  • Sayed Hamid Matinkhah

    (Isfahan University of Technology)

  • Mohammad Reza Mosaddeghi

    (Isfahan University of Technology)

Abstract

Precipitation in arid lands is low and often highly variable; therefore, efficient irrigation is the best approach for managing limited water supplies and irregular precipitation events for establishing seedlings. The HYDRUS-2D/3D software is a useful tool for simulating water content distribution in the design of subsurface irrigation systems, determining the proper locations of reservoir and plant, irrigation scheduling and maximizing water use efficiency. In this study, wetting patterns around the reservoirs with different permeabilities (low, medium, and high) were assessed in the field and simulated using the HYDRUS-2D/3D software. Different amounts of animal manure and wheat straw were mixed with clay fractions to produce the reservoirs with different permeabilities. The results showed that the highest soil water content was observed near the reservoir, and it decreased with distancing from the reservoir. In the high permeability treatment (with saturated hydraulic conductivity, Ks = 0.2 cm/day), a large volume of water was released for almost three days, so that more water was deep-percolated and lowered the soil water available to plant roots. In the low and medium permeability treatments (Ks = 0.08, and 0.06 cm/day, respectively), the water slowly leaked, and the maximum soil water content was observed in the 20–40 cm layer over time. The HYDRUS-2D/3D software was able to simulate water flow and soil water content during the growth period of plants, with a high correspondence between measured and simulated soil water contents (R2 = 0.90–0.95), which was higher in the lower discharges.

Suggested Citation

  • Zahra Jafari & Sayed Hamid Matinkhah & Mohammad Reza Mosaddeghi, 2022. "Wetting Patterns in a Subsurface Irrigation System Using Reservoirs of Different Permeabilities: Experimental and HYDRUS-2D/3D Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5335-5352, November.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:14:d:10.1007_s11269-022-03226-w
    DOI: 10.1007/s11269-022-03226-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03226-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03226-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gardenas, A.I. & Hopmans, J.W. & Hanson, B.R. & Simunek, J., 2005. "Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation," Agricultural Water Management, Elsevier, vol. 74(3), pages 219-242, June.
    2. Kandelous, Maziar M. & Simunek, Jirí, 2010. "Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 97(7), pages 1070-1076, July.
    3. Li, Jiusheng & Zhang, Jianjun & Rao, Minjie, 2004. "Wetting patterns and nitrogen distributions as affected by fertigation strategies from a surface point source," Agricultural Water Management, Elsevier, vol. 67(2), pages 89-104, June.
    4. Mailhol, Jean Claude & Ruelle, Pierre & Walser, Sabine & Schütze, Niels & Dejean, Cyril, 2011. "Analysis of AET and yield predictions under surface and buried drip irrigation systems using the Crop Model PILOTE and Hydrus-2D," Agricultural Water Management, Elsevier, vol. 98(6), pages 1033-1044, April.
    5. Saefuddin, Reskiana & Saito, Hirotaka & Šimůnek, Jiří, 2019. "Experimental and numerical evaluation of a ring-shaped emitter for subsurface irrigation," Agricultural Water Management, Elsevier, vol. 211(C), pages 111-122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hojjat Ghorbani Vaghei & Hossein Ali Bahrami & Farzin Nasiri Saleh, 2023. "Optimizing Soil Moisture in Subsurface Irrigation System Based on Porous Clay Capsule Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3037-3051, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azad, Nasrin & Behmanesh, Javad & Rezaverdinejad, Vahid & Abbasi, Fariborz & Navabian, Maryam, 2018. "Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements," Agricultural Water Management, Elsevier, vol. 208(C), pages 344-356.
    2. Nayebloie, Fatemeh & Kouchakzadeh, Mahdi & Ebrahimi, Kumars & Homaee, Mahdi & Abbasi, Fariborz, 2022. "Improving fertigation efficiency by numerical modelling in a lettuce subsurface drip irrigation farm," Agricultural Water Management, Elsevier, vol. 270(C).
    3. Jamei, Mehdi & Maroufpoor, Saman & Aminpour, Younes & Karbasi, Masoud & Malik, Anurag & Karimi, Bakhtiar, 2022. "Developing hybrid data-intelligent method using Boruta-random forest optimizer for simulation of nitrate distribution pattern," Agricultural Water Management, Elsevier, vol. 270(C).
    4. Arbat, G. & Roselló, A. & Domingo Olivé, F. & Puig-Bargués, J. & González Llinàs, E. & Duran-Ros, M. & Pujol, J. & Ramírez de Cartagena, F., 2013. "Soil water and nitrate distribution under drip irrigated corn receiving pig slurry," Agricultural Water Management, Elsevier, vol. 120(C), pages 11-22.
    5. He, Qinsi & Li, Sien & Kang, Shaozhong & Yang, Hanbo & Qin, Shujing, 2018. "Simulation of water balance in a maize field under film-mulching drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 252-260.
    6. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    7. Phogat, V. & Šimůnek, J. & Skewes, M.A. & Cox, J.W. & McCarthy, M.G., 2016. "Improving the estimation of evaporation by the FAO-56 dual crop coefficient approach under subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 178(C), pages 189-200.
    8. Saefuddin, Reskiana & Saito, Hirotaka & Šimůnek, Jiří, 2019. "Experimental and numerical evaluation of a ring-shaped emitter for subsurface irrigation," Agricultural Water Management, Elsevier, vol. 211(C), pages 111-122.
    9. Barakat, Mohammad & Cheviron, Bruno & Angulo-Jaramillo, Rafael, 2016. "Influence of the irrigation technique and strategies on the nitrogen cycle and budget: A review," Agricultural Water Management, Elsevier, vol. 178(C), pages 225-238.
    10. Meng, Wenjie & Xing, Jinliang & Niu, Mu & Zuo, Qiang & Wu, Xun & Shi, Jianchu & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2023. "Optimizing fertigation schemes based on root distribution," Agricultural Water Management, Elsevier, vol. 275(C).
    11. Patel, Neelam & Rajput, T.B.S., 2008. "Dynamics and modeling of soil water under subsurface drip irrigated onion," Agricultural Water Management, Elsevier, vol. 95(12), pages 1335-1349, December.
    12. Nazari, Ehsan & Besharat, Sina & Zeinalzadeh, Kamran & Mohammadi, Adel, 2021. "Measurement and simulation of the water flow and root uptake in soil under subsurface drip irrigation of apple tree," Agricultural Water Management, Elsevier, vol. 255(C).
    13. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    14. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    15. Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
    16. Amin, M.G. Mostofa & Šimůnek, Jirka & Lægdsmand, Mette, 2014. "Simulation of the redistribution and fate of contaminants from soil-injected animal slurry," Agricultural Water Management, Elsevier, vol. 131(C), pages 17-29.
    17. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    18. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    19. Nie, Wei-Bo & Dong, Shu-Xin & Li, Yi-Bo & Ma, Xiao-Yi, 2021. "Optimization of the border size on the irrigation district scale – Example of the Hetao irrigation district," Agricultural Water Management, Elsevier, vol. 248(C).
    20. Al-Ogaidi, Ahmed A.M. & Wayayok, Aimrun & Rowshon, M.K. & Abdullah, Ahmed Fikri, 2016. "Wetting patterns estimation under drip irrigation systems using an enhanced empirical model," Agricultural Water Management, Elsevier, vol. 176(C), pages 203-213.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:14:d:10.1007_s11269-022-03226-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.