IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i6p1033-1044.html
   My bibliography  Save this article

Analysis of AET and yield predictions under surface and buried drip irrigation systems using the Crop Model PILOTE and Hydrus-2D

Author

Listed:
  • Mailhol, Jean Claude
  • Ruelle, Pierre
  • Walser, Sabine
  • Schütze, Niels
  • Dejean, Cyril

Abstract

Innovative irrigation solutions have to face water scarcity problems affecting the Mediterranean countries. Generally, surface (DI) or subsurface drip irrigation systems (SDI) have the ability to increase water productivity (WP). But the question about their possible utilisation for crops such as corn would merit to be analysed using an appropriate economic tool. The latter would be necessary based on the utilisation of a modelling approach to identify the optimal irrigation strategy associating a water amount with a crop yield (Yc). In this perspective, a possible utilisation of the operative 1D crop model PILOTE for simulating actual evapotranspiration (AET) and yield under a 2D soil water transfer process characterizing DI and SDI was analysed. In this study, limited to a loamy soil cultivated with corn, the pertinence of the root water uptake model used in the numerical code Hydrus-2D for AET estimations of actual evapotranspiration (AET) under water stress conditions is discussed throughout the Yc = F(AET) relationship established by PILOTE on the basis of validated simulations. The conclusions of this work are (i): with slight adaptations, PILOTE can provide reliable WP estimations associated to irrigation strategies under DI and SDI, (ii): the current Hydrus-2D version used in this study underestimates AET, compared with PILOTE, in a range varying from 7% under moderate water stress conditions to 14% under severe ones, (iii): A lateral spacing of 1.6 m for the irrigation of corn with a SDI system is an appropriate solution on a loamy soil under a Mediterranean climate. A local Yc = F(AET) relationship associated with a Hydrus-2D version taking into account the compensating root uptake process could result in an interesting tool to help identify the optimal irrigation system design under different soil conditions.

Suggested Citation

  • Mailhol, Jean Claude & Ruelle, Pierre & Walser, Sabine & Schütze, Niels & Dejean, Cyril, 2011. "Analysis of AET and yield predictions under surface and buried drip irrigation systems using the Crop Model PILOTE and Hydrus-2D," Agricultural Water Management, Elsevier, vol. 98(6), pages 1033-1044, April.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:6:p:1033-1044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(11)00021-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khaledian, M.R. & Mailhol, J.C. & Ruelle, P. & Rosique, P., 2009. "Adapting PILOTE model for water and yield management under direct seeding system: The case of corn and durum wheat in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 96(5), pages 757-770, May.
    2. M.R. Khaledian & J.C. Mailhol & P. Ruelle & J.L. Rosique, 2009. "Adapting PILOTE model for water and yield management under direct seeding system: The case of corn and durum wheat in a Mediterranean context," Post-Print hal-00454543, HAL.
    3. Hanson, Blaine R. & Simunek, Jirka & Hopmans, Jan W., 2006. "Evaluation of urea-ammonium-nitrate fertigation with drip irrigation using numerical modeling," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 102-113, November.
    4. Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
    5. Gardenas, A.I. & Hopmans, J.W. & Hanson, B.R. & Simunek, J., 2005. "Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation," Agricultural Water Management, Elsevier, vol. 74(3), pages 219-242, June.
    6. Mailhol, J. C. & Zairi, A. & Slatni, A. & Ben Nouma, B. & El Amani, H., 2004. "Analysis of irrigation systems and irrigation strategies for durum wheat in Tunisia," Agricultural Water Management, Elsevier, vol. 70(1), pages 19-37, October.
    7. Patel, Neelam & Rajput, T.B.S., 2008. "Dynamics and modeling of soil water under subsurface drip irrigated onion," Agricultural Water Management, Elsevier, vol. 95(12), pages 1335-1349, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arbat, G. & Roselló, A. & Domingo Olivé, F. & Puig-Bargués, J. & González Llinàs, E. & Duran-Ros, M. & Pujol, J. & Ramírez de Cartagena, F., 2013. "Soil water and nitrate distribution under drip irrigated corn receiving pig slurry," Agricultural Water Management, Elsevier, vol. 120(C), pages 11-22.
    2. Rodrigues, Gonçalo C. & Paredes, Paula & Gonçalves, José M. & Alves, Isabel & Pereira, Luis S., 2013. "Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns," Agricultural Water Management, Elsevier, vol. 126(C), pages 85-96.
    3. M.R. Khaledian & J.C. Mailhol & P. Ruelle & C. Dejean, 2013. "Effect of cropping strategies on the irrigation water productivity of durum wheat," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(1), pages 29-36.
    4. Mailhol, J.-C. & Albasha, R. & Cheviron, B. & Lopez, J.-M. & Ruelle, P. & Dejean, C., 2018. "The PILOTE-N model for improving water and nitrogen management practices: Application in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 204(C), pages 162-179.
    5. Richard, Bastien & Bonté, Bruno & Delmas, Magalie & Braud, Isabelle & Cheviron, Bruno & Veyssier, Julien & Barreteau, Olivier, 2022. "A co-simulation approach to study the impact of gravity collective irrigation constraints on plant dynamics in Southern France," Agricultural Water Management, Elsevier, vol. 262(C).
    6. He, Qinsi & Li, Sien & Kang, Shaozhong & Yang, Hanbo & Qin, Shujing, 2018. "Simulation of water balance in a maize field under film-mulching drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 252-260.
    7. Elamri, Y. & Cheviron, B. & Lopez, J.-M. & Dejean, C. & Belaud, G., 2018. "Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces," Agricultural Water Management, Elsevier, vol. 208(C), pages 440-453.
    8. Albasha, Rami & Mailhol, Jean-Claude & Cheviron, Bruno, 2015. "Compensatory uptake functions in empirical macroscopic root water uptake models – Experimental and numerical analysis," Agricultural Water Management, Elsevier, vol. 155(C), pages 22-39.
    9. Sebastian Kloss & Raji Pushpalatha & Kefasi Kamoyo & Niels Schütze, 2012. "Evaluation of Crop Models for Simulating and Optimizing Deficit Irrigation Systems in Arid and Semi-arid Countries Under Climate Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 997-1014, March.
    10. Autovino, Dario & Rallo, Giovanni & Provenzano, Giuseppe, 2018. "Predicting soil and plant water status dynamic in olive orchards under different irrigation systems with Hydrus-2D: Model performance and scenario analysis," Agricultural Water Management, Elsevier, vol. 203(C), pages 225-235.
    11. Julia de Frutos Cachorro & Katrin Erdlenbruch & Mabel Tidball, 2017. "A dynamic model of irrigation and land-use choice: application to the Beauce aquifer in France," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(1), pages 99-120.
    12. Nayebloie, Fatemeh & Kouchakzadeh, Mahdi & Ebrahimi, Kumars & Homaee, Mahdi & Abbasi, Fariborz, 2022. "Improving fertigation efficiency by numerical modelling in a lettuce subsurface drip irrigation farm," Agricultural Water Management, Elsevier, vol. 270(C).
    13. Zahra Jafari & Sayed Hamid Matinkhah & Mohammad Reza Mosaddeghi, 2022. "Wetting Patterns in a Subsurface Irrigation System Using Reservoirs of Different Permeabilities: Experimental and HYDRUS-2D/3D Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5335-5352, November.
    14. Hamze, Mohamad & Cheviron, Bruno & Baghdadi, Nicolas & Lo, Madiop & Courault, Dominique & Zribi, Mehrez, 2023. "Detection of irrigation dates and amounts on maize plots from the integration of Sentinel-2 derived Leaf Area Index values in the Optirrig crop model," Agricultural Water Management, Elsevier, vol. 283(C).
    15. Haddon, Antoine & Kechichian, Loïc & Harmand, Jérôme & Dejean, Cyril & Ait-Mouheb, Nassim, 2023. "Linking soil moisture sensors and crop models for irrigation management," Ecological Modelling, Elsevier, vol. 484(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
    2. Karandish, Fatemeh & Šimůnek, Jiří, 2017. "Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS," Agricultural Water Management, Elsevier, vol. 193(C), pages 174-190.
    3. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    4. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    5. Phogat, V. & Skewes, Mark A. & Mahadevan, M. & Cox, J.W., 2013. "Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 1-11.
    6. Barakat, Mohammad & Cheviron, Bruno & Angulo-Jaramillo, Rafael, 2016. "Influence of the irrigation technique and strategies on the nitrogen cycle and budget: A review," Agricultural Water Management, Elsevier, vol. 178(C), pages 225-238.
    7. M.R. Khaledian & J.C. Mailhol & P. Ruelle & C. Dejean, 2013. "Effect of cropping strategies on the irrigation water productivity of durum wheat," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(1), pages 29-36.
    8. Albasha, Rami & Mailhol, Jean-Claude & Cheviron, Bruno, 2015. "Compensatory uptake functions in empirical macroscopic root water uptake models – Experimental and numerical analysis," Agricultural Water Management, Elsevier, vol. 155(C), pages 22-39.
    9. Elmaloglou, S. & Diamantopoulos, E. & Dercas, N., 2010. "Comparing soil moisture under trickle irrigation modeled as a point and line source," Agricultural Water Management, Elsevier, vol. 97(3), pages 426-432, March.
    10. Shuang Liu & Yuru Gao & Huilin Lang & Yong Liu & Hong Zhang, 2022. "Effects of Conventional Tillage and No-Tillage Systems on Maize ( Zea mays L.) Growth and Yield, Soil Structure, and Water in Loess Plateau of China: Field Experiment and Modeling Studies," Land, MDPI, vol. 11(11), pages 1-14, October.
    11. Elamri, Y. & Cheviron, B. & Lopez, J.-M. & Dejean, C. & Belaud, G., 2018. "Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces," Agricultural Water Management, Elsevier, vol. 208(C), pages 440-453.
    12. Wei, Zheng & Paredes, Paula & Liu, Yu & Chi, Wei Wei & Pereira, Luis S., 2015. "Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain," Agricultural Water Management, Elsevier, vol. 147(C), pages 43-53.
    13. Popova, Zornitsa & Pereira, Luis S., 2011. "Modelling for maize irrigation scheduling using long term experimental data from Plovdiv region, Bulgaria," Agricultural Water Management, Elsevier, vol. 98(4), pages 675-683, February.
    14. Jamei, Mehdi & Maroufpoor, Saman & Aminpour, Younes & Karbasi, Masoud & Malik, Anurag & Karimi, Bakhtiar, 2022. "Developing hybrid data-intelligent method using Boruta-random forest optimizer for simulation of nitrate distribution pattern," Agricultural Water Management, Elsevier, vol. 270(C).
    15. Ravikumar, V. & Vijayakumar, G. & Simunek, J. & Chellamuthu, S. & Santhi, R. & Appavu, K., 2011. "Evaluation of fertigation scheduling for sugarcane using a vadose zone flow and transport model," Agricultural Water Management, Elsevier, vol. 98(9), pages 1431-1440, July.
    16. Richard, Bastien & Bonté, Bruno & Delmas, Magalie & Braud, Isabelle & Cheviron, Bruno & Veyssier, Julien & Barreteau, Olivier, 2022. "A co-simulation approach to study the impact of gravity collective irrigation constraints on plant dynamics in Southern France," Agricultural Water Management, Elsevier, vol. 262(C).
    17. Karandish, Fatemeh & Šimůnek, Jiří, 2019. "A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint," Agricultural Water Management, Elsevier, vol. 213(C), pages 809-820.
    18. Wei, Qi & Wei, Qi & Xu, Junzeng & Liu, Yuzhou & Wang, Dong & Chen, Shengyu & Qian, Wenhao & He, Min & Chen, Peng & Zhou, Xuanying & Qi, Zhiming, 2024. "Nitrogen losses from soil as affected by water and fertilizer management under drip irrigation: Development, hotspots and future perspectives," Agricultural Water Management, Elsevier, vol. 296(C).
    19. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    20. Meng, Wenjie & Xing, Jinliang & Niu, Mu & Zuo, Qiang & Wu, Xun & Shi, Jianchu & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2023. "Optimizing fertigation schemes based on root distribution," Agricultural Water Management, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:6:p:1033-1044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.