IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v130y2013icp90-102.html
   My bibliography  Save this article

Influence of deficit irrigation on growth, yield and yield parameters of cotton–maize cropping sequence

Author

Listed:
  • Sampathkumar, T.
  • Pandian, B.J.
  • Rangaswamy, M.V.
  • Manickasundaram, P.
  • Jeyakumar, P.

Abstract

Field experiments were conducted at Agricultural College and Research Institute, Coimbatore, India during 2007–2009 to study the effect of deficit irrigation practices implemented through drip irrigation system on cotton–maize cropping sequence. Creation of soil moisture gradient is essential to explore the beneficial effects of partial root zone drying (PRD) irrigation; and it could be possible through ADI (alternate deficit irrigation) practice in paired row system of drip layout, commonly practiced in India. In the present study, PRD and deficit irrigation (DI) concepts (creation of soil moisture gradient) were implemented through ADI at two levels of irrigation using drip irrigation system. Experimental treatments comprised of seven irrigation levels (full and deficit) through drip system with surface irrigation for comparison. Maize was sown after cotton under no till condition without disturbing the raised bed and drip layout. Response of the crops to water stress indicated growth, yield parameters and crop yield were highest in mild water deficit (ADI at 100% ETc once in three days) among different deficit irrigation treatments. Alternate deficit irrigation (ADI100-50 and ADI80-40) resulted in higher values in plant height, LAI (leaf area index) and DMP (dry matter production). Among the deficit irrigation practices, mild deficit (ADI at 100% ETc once in three days) registered higher values for seed cotton yield (3670–3760kgha−1), grain yield of maize (7420–7590kgha−1). The same treatment registered higher values for net income and benefit cost ratio (BCR) in both the crops. Number of bolls per plant and sympodial branches per plant were the highly correlated parameters to seed cotton yield. In the case of maize, the number of grain per cob and cob weight were the highly correlated parameters to grain yield.

Suggested Citation

  • Sampathkumar, T. & Pandian, B.J. & Rangaswamy, M.V. & Manickasundaram, P. & Jeyakumar, P., 2013. "Influence of deficit irrigation on growth, yield and yield parameters of cotton–maize cropping sequence," Agricultural Water Management, Elsevier, vol. 130(C), pages 90-102.
  • Handle: RePEc:eee:agiwat:v:130:y:2013:i:c:p:90-102
    DOI: 10.1016/j.agwat.2013.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413002278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Hendawy, Salah E. & El-Lattief, Essam A. Abd & Ahmed, Mohamed S. & Schmidhalter, Urs, 2008. "Irrigation rate and plant density effects on yield and water use efficiency of drip-irrigated corn," Agricultural Water Management, Elsevier, vol. 95(7), pages 836-844, July.
    2. Dagdelen, Necdet & Yilmaz, Ersel & Sezgin, Fuat & Gurbuz, Talih, 2006. "Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 63-85, April.
    3. Dagdelen, N. & Basal, H. & YIlmaz, E. & Gürbüz, T. & Akçay, S., 2009. "Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey," Agricultural Water Management, Elsevier, vol. 96(1), pages 111-120, January.
    4. Pandey, R. K. & Maranville, J. W. & Chetima, M. M., 2000. "Deficit irrigation and nitrogen effects on maize in a Sahelian environment: II. Shoot growth, nitrogen uptake and water extraction," Agricultural Water Management, Elsevier, vol. 46(1), pages 15-27, November.
    5. Yazar, Attila & Sezen, S. Metin & Sesveren, Sertan, 2002. "LEPA and trickle irrigation of cotton in the Southeast Anatolia Project (GAP) area in Turkey," Agricultural Water Management, Elsevier, vol. 54(3), pages 189-203, April.
    6. Farré, I. & Faci, J.-M., 2009. "Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 96(3), pages 383-394, March.
    7. Pandey, R. K. & Maranville, J. W. & Admou, A., 2000. "Deficit irrigation and nitrogen effects on maize in a Sahelian environment: I. Grain yield and yield components," Agricultural Water Management, Elsevier, vol. 46(1), pages 1-13, November.
    8. Bozkurt, Yesim & Yazar, Attila & Gencel, Burcin & Sezen, Metin Semih, 2006. "Optimum lateral spacing for drip-irrigated corn in the Mediterranean Region of Turkey," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 113-120, September.
    9. Karam, Fadi & Lahoud, Rafic & Masaad, Randa & Daccache, Andre & Mounzer, Oussama & Rouphael, Youssef, 2006. "Water use and lint yield response of drip irrigated cotton to the length of irrigation season," Agricultural Water Management, Elsevier, vol. 85(3), pages 287-295, October.
    10. Oktem, Abdullah & Simsek, Mehmet & Oktem, A. Gulgun, 2003. "Deficit irrigation effects on sweet corn (Zea mays saccharata Sturt) with drip irrigation system in a semi-arid region: I. Water-yield relationship," Agricultural Water Management, Elsevier, vol. 61(1), pages 63-74, June.
    11. Ibragimov, Nazirbay & Evett, Steven R. & Esanbekov, Yusupbek & Kamilov, Bakhtiyor S. & Mirzaev, Lutfullo & Lamers, John P.A., 2007. "Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 112-120, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daneshnia, F. & Amini, A. & Chaichi, M.R., 2016. "Berseem clover quality and basil essential oil yield in intercropping system under limited irrigation treatments with surfactant," Agricultural Water Management, Elsevier, vol. 164(P2), pages 331-339.
    2. Guo, Jinjin & Fan, Junliang & Xiang, Youzhen & Zhang, Fucang & Yan, Shicheng & Zhang, Xueyan & Zheng, Jing & Li, Yuepeng & Tang, Zijun & Li, Zhijun, 2022. "Coupling effects of irrigation amount and nitrogen fertilizer type on grain yield, water productivity and nitrogen use efficiency of drip-irrigated maize," Agricultural Water Management, Elsevier, vol. 261(C).
    3. Wang, Ning & Zhang, Tonghui & Cong, Anqi & Lian, Jie, 2023. "Integrated application of fertilization and reduced irrigation improved maize (Zea mays L.) yield, crop water productivity and nitrogen use efficiency in a semi-arid region," Agricultural Water Management, Elsevier, vol. 289(C).
    4. Rao, Sajjan Singh & Tanwar, Suresh Pal Singh & Regar, Panna Lal, 2016. "Effect of deficit irrigation, phosphorous inoculation and cycocel spray on root growth, seed cotton yield and water productivity of drip irrigated cotton in arid environment," Agricultural Water Management, Elsevier, vol. 169(C), pages 14-25.
    5. Paredes, P. & Rodrigues, G.C. & Alves, I. & Pereira, L.S., 2014. "Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies," Agricultural Water Management, Elsevier, vol. 135(C), pages 27-39.
    6. Zheng, Junlin & Wang, Shujun & Wang, Ruimin & Chen, Yinglong & Siddique, Kadambot H.M. & Xia, Guimin & Chi, Daocai, 2021. "Ameliorative roles of biochar-based fertilizer on morpho-physiological traits, nutrient uptake and yield in peanut (Arachis hypogaea L.) under water stress," Agricultural Water Management, Elsevier, vol. 257(C).
    7. Zhong, Yun & Fei, Liangjun & Li, Yibo & Zeng, Jian & Dai, Zhiguang, 2019. "Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 222(C), pages 221-230.
    8. Abdul Khalil, H.P.S. & Hossain, Md. Sohrab & Rosamah, Enih & Azli, N.A. & Saddon, N. & Davoudpoura, Y. & Islam, Md. Nazrul & Dungani, Rudi, 2015. "The role of soil properties and it’s interaction towards quality plant fiber: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1006-1015.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    2. Dagdelen, N. & Basal, H. & YIlmaz, E. & Gürbüz, T. & Akçay, S., 2009. "Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey," Agricultural Water Management, Elsevier, vol. 96(1), pages 111-120, January.
    3. Couto, A. & Ruiz Padín, A. & Reinoso, B., 2013. "Comparative yield and water use efficiency of two maize hybrids differing in maturity under solid set sprinkler and two different lateral spacing drip irrigation systems in León, Spain," Agricultural Water Management, Elsevier, vol. 124(C), pages 77-84.
    4. Greaves, Geneille E. & Wang, Yu-Min, 2017. "Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment," Agricultural Water Management, Elsevier, vol. 188(C), pages 115-125.
    5. Dagdelen, Necdet & Yilmaz, Ersel & Sezgin, Fuat & Gurbuz, Talih, 2006. "Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 63-85, April.
    6. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    7. Robel Admasu & Abraham W Michael & Tilahun Hordofa, 2019. "Senior Irrigation Researcher, Melkassa Agricultural Research Center, Ethiopia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 16(4), pages 83-87, January.
    8. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    9. Papastylianou, Panayiota T. & Argyrokastritis, Ioannis G., 2014. "Effect of limited drip irrigation regime on yield, yield components, and fiber quality of cotton under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 142(C), pages 127-134.
    10. Wang, Feng & Meng, Haofeng & Xie, Ruizhi & Wang, Keru & Ming, Bo & Hou, Peng & Xue, Jun & Li, Shaokun, 2023. "Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize," Agricultural Water Management, Elsevier, vol. 280(C).
    11. Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
    12. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    13. Ünlü, Mustafa & Kanber, RIza & Koç, D. Levent & Tekin, Servet & Kapur, Burçak, 2011. "Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment," Agricultural Water Management, Elsevier, vol. 98(4), pages 597-605, February.
    14. Mansouri-Far, Cyrus & Modarres Sanavy, Seyed Ali Mohammad & Saberali, Seyed Farhad, 2010. "Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 97(1), pages 12-22, January.
    15. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.
    16. Giuseppe Salvatore Vitale & Aurelio Scavo & Silvia Zingale & Teresa Tuttolomondo & Carmelo Santonoceto & Gaetano Pandino & Sara Lombardo & Umberto Anastasi & Paolo Guarnaccia, 2024. "Agronomic Strategies for Sustainable Cotton Production: A Systematic Literature Review," Agriculture, MDPI, vol. 14(9), pages 1-20, September.
    17. Manning, Dale T. & Lurbé, Salvador & Comas, Louise H. & Trout, Thomas J. & Flynn, Nora & Fonte, Steven J., 2018. "Economic viability of deficit irrigation in the Western US," Agricultural Water Management, Elsevier, vol. 196(C), pages 114-123.
    18. Pereira, L.S. & Paredes, P. & Sholpankulov, E.D. & Inchenkova, O.P. & Teodoro, P.R. & Horst, M.G., 2009. "Irrigation scheduling strategies for cotton to cope with water scarcity in the Fergana Valley, Central Asia," Agricultural Water Management, Elsevier, vol. 96(5), pages 723-735, May.
    19. El-Hendawy, Salah E. & Schmidhalter, Urs, 2010. "Optimal coupling combinations between irrigation frequency and rate for drip-irrigated maize grown on sandy soil," Agricultural Water Management, Elsevier, vol. 97(3), pages 439-448, March.
    20. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:130:y:2013:i:c:p:90-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.