IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10070-d631567.html
   My bibliography  Save this article

Irrigation-Water Management and Productivity of Cotton: A Review

Author

Listed:
  • Komlan Koudahe

    (Biological and Agricultural Engineering Department, Kansas State University, 1016 Seaton Hall, 920 N. Martin Luther King Jr. Drive, Manhattan, KS 66506, USA)

  • Aleksey Y. Sheshukov

    (Biological and Agricultural Engineering Department, Kansas State University, 1016 Seaton Hall, 920 N. Martin Luther King Jr. Drive, Manhattan, KS 66506, USA)

  • Jonathan Aguilar

    (Biological and Agricultural Engineering Department, Kansas State University, 1016 Seaton Hall, 920 N. Martin Luther King Jr. Drive, Manhattan, KS 66506, USA
    Southwest Research and Extension Center, Kansas State University, 4500 E. Mary Street Garden City, Manhattan, KS 67846, USA)

  • Koffi Djaman

    (Agricultural Science Center at Farmington, Department of Plant and Environmental Sciences, New Mexico State University, Farmington, NM 87499, USA)

Abstract

A decrease in water resources, as well as changing environmental conditions, calls for efficient irrigation-water management in cotton-production systems. Cotton ( Gossypium sp.) is an important cash crop in many countries, and it is used more than any other fiber in the world. With water shortages occurring more frequently nowadays, researchers have developed many approaches for irrigation-water management to optimize yield and water-use efficiency. This review covers different irrigation methods and their effects on cotton yield. The review first considers the cotton crop coefficient (Kc) and shows that the FAO-56 values are not appropriate for all regions, hence local Kc values need to be determined. Second, cotton water use and evapotranspiration are reviewed. Cotton is sensitive to limited water, especially during the flowering stage, and irrigation scheduling should match the crop evapotranspiration. Water use depends upon location, climatic conditions, and irrigation methods and regimes. Third, cotton water-use efficiency is reviewed, and it varies widely depending upon location, irrigation method, and cotton variety. Fourth, the effect of different irrigation methods on cotton yield and yield components is reviewed. Although yields and physiological measurements, such as photosynthetic rate, usually decrease with water stress for most crops, cotton has proven to be drought resistant and deficit irrigation can serve as an effective management practice. Fifth, the effect of plant density on cotton yield and yield components is reviewed. Yield is decreased at high and low plant populations, and an optimum population must be determined for each location. Finally, the timing of irrigation termination (IT) is reviewed. Early IT can conserve water but may not result in maximum yields, while late IT can induce yield losses due to increased damage from pests. Extra water applied with late IT may adversely affect the yield and its quality and eventually compromise the profitability of the cotton production system. The optimum time for IT needs to be determined for each geographic location. The review compiles water-management studies dealing with cotton production in different parts of the world, and it provides information for sustainable cotton production.

Suggested Citation

  • Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10070-:d:631567
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10070/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10070/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Mitchell-McCallister, Donna & Williams, Ryan B. & Bordovsky, James & Mustian, Joseph & Ritchie, Glen & Lewis, Katie, 2020. "Maximizing profits via irrigation timing for capacity-constrained cotton production," Agricultural Water Management, Elsevier, vol. 229(C).
    3. Ünlü, Mustafa & Kanber, RIza & Koç, D. Levent & Tekin, Servet & Kapur, Burçak, 2011. "Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment," Agricultural Water Management, Elsevier, vol. 98(4), pages 597-605, February.
    4. Dagdelen, Necdet & Yilmaz, Ersel & Sezgin, Fuat & Gurbuz, Talih, 2006. "Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 63-85, April.
    5. Blessing Masasi & Saleh Taghvaeian & Randy Boman & Sumon Datta, 2019. "Impacts of Irrigation Termination Date on Cotton Yield and Irrigation Requirement," Agriculture, MDPI, vol. 9(2), pages 1-15, February.
    6. Çetin, Oner & Kara, Abdurrahman, 2019. "Assesment of water productivity using different drip irrigation systems for cotton," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    7. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.
    8. Mateos, L. & Berengena, J. & Orgaz, F. & Diz, J. & Fereres, E., 1991. "A comparison between drip and furrow irrigation in cotton at two levels of water supply," Agricultural Water Management, Elsevier, vol. 19(4), pages 313-324, May.
    9. Yazar, Attila & Sezen, S. Metin & Sesveren, Sertan, 2002. "LEPA and trickle irrigation of cotton in the Southeast Anatolia Project (GAP) area in Turkey," Agricultural Water Management, Elsevier, vol. 54(3), pages 189-203, April.
    10. Chen, Zongkui & Niu, Yuping & Zhao, Ruihai & Han, Chunli & Han, Huanyong & Luo, Honghai, 2019. "The combination of limited irrigation and high plant density optimizes canopy structure and improves the water use efficiency of cotton," Agricultural Water Management, Elsevier, vol. 218(C), pages 139-148.
    11. Kumar, Vipan & Udeigwe, Theophilus K. & Clawson, Ernest L. & Rohli, Robert V. & Miller, Donnie K., 2015. "Crop water use and stage-specific crop coefficients for irrigated cotton in the mid-south, United States," Agricultural Water Management, Elsevier, vol. 156(C), pages 63-69.
    12. Ayars, J. E. & Phene, C. J. & Hutmacher, R. B. & Davis, K. R. & Schoneman, R. A. & Vail, S. S. & Mead, R. M., 1999. "Subsurface drip irrigation of row crops: a review of 15 years of research at the Water Management Research Laboratory," Agricultural Water Management, Elsevier, vol. 42(1), pages 1-27, September.
    13. Rajak, Daleshwar & Manjunatha, M.V. & Rajkumar, G.R. & Hebbara, M. & Minhas, P.S., 2006. "Comparative effects of drip and furrow irrigation on the yield and water productivity of cotton (Gossypium hirsutum L.) in a saline and waterlogged vertisol," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 30-36, May.
    14. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2016. "Determining water use efficiency for wheat and cotton: A meta-regression analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236059, Agricultural and Applied Economics Association.
    15. Adhikari, Pradip & Ale, Srinivasulu & Bordovsky, James P. & Thorp, Kelly R. & Modala, Naga R. & Rajan, Nithya & Barnes, Edward M., 2016. "Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model," Agricultural Water Management, Elsevier, vol. 164(P2), pages 317-330.
    16. Cetin, O. & Bilgel, L., 2002. "Effects of different irrigation methods on shedding and yield of cotton," Agricultural Water Management, Elsevier, vol. 54(1), pages 1-15, March.
    17. Bezerra, Bergson G. & da Silva, Bernardo B. & Bezerra, José R.C. & Sofiatti, Valdinei & dos Santos, Carlos A.C., 2012. "Evapotranspiration and crop coefficient for sprinkler-irrigated cotton crop in Apodi Plateau semiarid lands of Brazil," Agricultural Water Management, Elsevier, vol. 107(C), pages 86-93.
    18. Ko, Jonghan & Piccinni, Giovanni & Marek, Thomas & Howell, Terry, 2009. "Determination of growth-stage-specific crop coefficients (Kc) of cotton and wheat," Agricultural Water Management, Elsevier, vol. 96(12), pages 1691-1697, December.
    19. Wang, Jiangtao & Du, Gangfeng & Tian, Jingshan & Zhang, Yali & Jiang, Chuangdao & Zhang, Wangfeng, 2020. "Effect of irrigation methods on root growth, root-shoot ratio and yield components of cotton by regulating the growth redundancy of root and shoot," Agricultural Water Management, Elsevier, vol. 234(C).
    20. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Sima, Matthew W. & Zeng, Fanjiang & Li, Lanhai & Li, Xiangyi & Gu, Zhe, 2020. "Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate," Agricultural Water Management, Elsevier, vol. 234(C).
    21. Karam, Fadi & Lahoud, Rafic & Masaad, Randa & Daccache, Andre & Mounzer, Oussama & Rouphael, Youssef, 2006. "Water use and lint yield response of drip irrigated cotton to the length of irrigation season," Agricultural Water Management, Elsevier, vol. 85(3), pages 287-295, October.
    22. Piccinni, Giovanni & Ko, Jonghan & Marek, Thomas & Howell, Terry, 2009. "Determination of growth-stage-specific crop coefficients (KC) of maize and sorghum," Agricultural Water Management, Elsevier, vol. 96(12), pages 1698-1704, December.
    23. Grismer, M. E., 2002. "Regional cotton lint yield, ETc and water value in Arizona and California," Agricultural Water Management, Elsevier, vol. 54(3), pages 227-242, April.
    24. Suleiman, Ayman A. & Tojo Soler, Cecilia M. & Hoogenboom, Gerrit, 2007. "Evaluation of FAO-56 crop coefficient procedures for deficit irrigation management of cotton in a humid climate," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 33-42, July.
    25. Buttar, G.S. & Aujla, M.S. & Thind, H.S. & Singh, C.J. & Saini, K.S., 2007. "Effect of timing of first and last irrigation on the yield and water use efficiency in cotton," Agricultural Water Management, Elsevier, vol. 89(3), pages 236-242, May.
    26. Batchelor, Charles & Lovell, Christopher & Murata, Monica, 1996. "Simple microirrigation techniques for improving irrigation efficiency on vegetable gardens," Agricultural Water Management, Elsevier, vol. 32(1), pages 37-48, November.
    27. Ibragimov, Nazirbay & Evett, Steven R. & Esanbekov, Yusupbek & Kamilov, Bakhtiyor S. & Mirzaev, Lutfullo & Lamers, John P.A., 2007. "Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 112-120, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalid Hussain & Ayesha Ilyas & Saqib Ali & Irshad Bibi & Qamar Shakil & Muhammad Usman Farid & Zulfiqar Ahmad Saqib & Adnan Habib & Erdoğan Eşref HAKKI, 2022. "Impacts of Nitrogen Fertilizer Application and Mulching on the Morpho-Physiological and Yield-Related Traits in Cotton," Agriculture, MDPI, vol. 13(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dagdelen, N. & Basal, H. & YIlmaz, E. & Gürbüz, T. & Akçay, S., 2009. "Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey," Agricultural Water Management, Elsevier, vol. 96(1), pages 111-120, January.
    2. Giuseppe Salvatore Vitale & Aurelio Scavo & Silvia Zingale & Teresa Tuttolomondo & Carmelo Santonoceto & Gaetano Pandino & Sara Lombardo & Umberto Anastasi & Paolo Guarnaccia, 2024. "Agronomic Strategies for Sustainable Cotton Production: A Systematic Literature Review," Agriculture, MDPI, vol. 14(9), pages 1-20, September.
    3. Kang, Yaohu & Wang, Ruoshui & Wan, Shuqin & Hu, Wei & Jiang, Shufang & Liu, Shiping, 2012. "Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China," Agricultural Water Management, Elsevier, vol. 109(C), pages 117-126.
    4. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    5. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    6. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2016. "Determining water use efficiency for wheat and cotton: A meta-regression analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236059, Agricultural and Applied Economics Association.
    7. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Sampathkumar, T. & Pandian, B.J. & Rangaswamy, M.V. & Manickasundaram, P. & Jeyakumar, P., 2013. "Influence of deficit irrigation on growth, yield and yield parameters of cotton–maize cropping sequence," Agricultural Water Management, Elsevier, vol. 130(C), pages 90-102.
    9. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Kumar, Vipan & Udeigwe, Theophilus K. & Clawson, Ernest L. & Rohli, Robert V. & Miller, Donnie K., 2015. "Crop water use and stage-specific crop coefficients for irrigated cotton in the mid-south, United States," Agricultural Water Management, Elsevier, vol. 156(C), pages 63-69.
    11. Ünlü, Mustafa & Kanber, RIza & Koç, D. Levent & Tekin, Servet & Kapur, Burçak, 2011. "Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment," Agricultural Water Management, Elsevier, vol. 98(4), pages 597-605, February.
    12. Yang, Pengju & Hu, Hongchang & Tian, Fuqiang & Zhang, Zhi & Dai, Chao, 2016. "Crop coefficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of northwestern China," Agricultural Water Management, Elsevier, vol. 171(C), pages 21-30.
    13. Shareef, Muhammad & Gui, Dongwei & Zeng, Fanjiang & Waqas, Muhammad & Zhang, Bo & Iqbal, Hassan, 2018. "Water productivity, growth, and physiological assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China," Agricultural Water Management, Elsevier, vol. 206(C), pages 1-10.
    14. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    15. Brar, Harjeet Singh & Singh, Pritpal, 2022. "Pre-and post-sowing irrigation scheduling impacts on crop phenology and water productivity of cotton (Gossypium hirsutum L.) in sub-tropical north-western India," Agricultural Water Management, Elsevier, vol. 274(C).
    16. Himanshu, Sushil Kumar & Fan, Yubing & Ale, Srinivasulu & Bordovsky, James, 2021. "Simulated efficient growth-stage-based deficit irrigation strategies for maximizing cotton yield, crop water productivity and net returns," Agricultural Water Management, Elsevier, vol. 250(C).
    17. Facchi, A. & Gharsallah, O. & Corbari, C. & Masseroni, D. & Mancini, M. & Gandolfi, C., 2013. "Determination of maize crop coefficients in humid climate regime using the eddy covariance technique," Agricultural Water Management, Elsevier, vol. 130(C), pages 131-141.
    18. Tan, Shuai & Wang, Quanjiu & Zhang, Jihong & Chen, Yong & Shan, Yuyang & Xu, Di, 2018. "Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 196(C), pages 99-113.
    19. Rebecka Törnqvist & Jerker Jarsjö, 2012. "Water Savings Through Improved Irrigation Techniques: Basin-Scale Quantification in Semi-Arid Environments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 949-962, March.
    20. Rao, Sajjan Singh & Tanwar, Suresh Pal Singh & Regar, Panna Lal, 2016. "Effect of deficit irrigation, phosphorous inoculation and cycocel spray on root growth, seed cotton yield and water productivity of drip irrigated cotton in arid environment," Agricultural Water Management, Elsevier, vol. 169(C), pages 14-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10070-:d:631567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.