IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v124y2013icp77-84.html
   My bibliography  Save this article

Comparative yield and water use efficiency of two maize hybrids differing in maturity under solid set sprinkler and two different lateral spacing drip irrigation systems in León, Spain

Author

Listed:
  • Couto, A.
  • Ruiz Padín, A.
  • Reinoso, B.

Abstract

The purpose of this study was to determine the technical viability of drip irrigation of maize in León, Spain, establishing the optimal parameters for crop cycle length and spacing between laterals and the feasibility of mild deficit irrigation. Water use efficiency (WUE) and irrigation water use efficiency (IWUE) were also determined, compared to the sprinkler method of irrigation widely used in the region. Treatments consisted of two irrigation methods (IMS: sprinkler irrigation, and IMD: drip irrigation) and two hybrid maturities (HMSS: short season, and HMMS: medium season). In sprinkler irrigation method, the irrigation level was 1.00ETc (crop evapotranspiration). Only for the drip irrigation treatments, subtreatments consisting of two lateral spacings (LS2: two rows, 110cm, and LS3: three rows, 165cm) and two irrigation levels (IL80: 0.80ETc and IL100: 1.00ETc) were studied. The mean grain yield was 17,551kgha−1 at 14% moisture content, with no significant difference between irrigation methods. The yields obtained with the medium season hybrid were significantly higher (18,191kgha−1) than those obtained with the short season hybrid (16,910kgha−1). No statistically significant differences were found between the yields obtained with the IL80 and IL100 treatments. Yields were slightly higher with the LS2 treatment than with LS3, although the level of statistical significance was very low (P=0.083). The mean WUE was 3.28kgm−3, and no significant differences were found between irrigation methods or crop cycle length. Highly significant differences were obtained between irrigation methods for IWUE: 3.38kgm−3 with IMS compared to 4.67kgm−3 with IMD, and reaching 5.17kgm−3 for IL80. The main conclusions of this study are that drip irrigation of maize is technically viable in the region and mild deficit irrigation does not reduce yields, obtaining yields equal to those achieved by sprinkler irrigation whilst presenting much higher irrigation water use efficiency.

Suggested Citation

  • Couto, A. & Ruiz Padín, A. & Reinoso, B., 2013. "Comparative yield and water use efficiency of two maize hybrids differing in maturity under solid set sprinkler and two different lateral spacing drip irrigation systems in León, Spain," Agricultural Water Management, Elsevier, vol. 124(C), pages 77-84.
  • Handle: RePEc:eee:agiwat:v:124:y:2013:i:c:p:77-84
    DOI: 10.1016/j.agwat.2013.03.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413000905
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.03.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Hendawy, Salah E. & Schmidhalter, Urs, 2010. "Optimal coupling combinations between irrigation frequency and rate for drip-irrigated maize grown on sandy soil," Agricultural Water Management, Elsevier, vol. 97(3), pages 439-448, March.
    2. El-Hendawy, Salah E. & El-Lattief, Essam A. Abd & Ahmed, Mohamed S. & Schmidhalter, Urs, 2008. "Irrigation rate and plant density effects on yield and water use efficiency of drip-irrigated corn," Agricultural Water Management, Elsevier, vol. 95(7), pages 836-844, July.
    3. Farré, I. & Faci, J.-M., 2009. "Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 96(3), pages 383-394, March.
    4. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    5. Payero, J.O. & Tarkalson, D.D. & Irmak, S. & Davison, D. & Petersen, J.L., 2009. "Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass," Agricultural Water Management, Elsevier, vol. 96(10), pages 1387-1397, October.
    6. Karam, Fadi & Breidy, Joelle & Stephan, Chafic & Rouphael, Joe, 2003. "Evapotranspiration, yield and water use efficiency of drip irrigated corn in the Bekaa Valley of Lebanon," Agricultural Water Management, Elsevier, vol. 63(2), pages 125-137, December.
    7. Colombo, Alberto & Or, Dani, 2006. "Plant water accessibility function: A design and management tool for trickle irrigation," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 45-62, April.
    8. Bozkurt, Yesim & Yazar, Attila & Gencel, Burcin & Sezen, Metin Semih, 2006. "Optimum lateral spacing for drip-irrigated corn in the Mediterranean Region of Turkey," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 113-120, September.
    9. Oktem, Abdullah & Simsek, Mehmet & Oktem, A. Gulgun, 2003. "Deficit irrigation effects on sweet corn (Zea mays saccharata Sturt) with drip irrigation system in a semi-arid region: I. Water-yield relationship," Agricultural Water Management, Elsevier, vol. 61(1), pages 63-74, June.
    10. Vories, E.D. & Tacker, P.L. & Lancaster, S.W. & Glover, R.E., 2009. "Subsurface drip irrigation of corn in the United States Mid-South," Agricultural Water Management, Elsevier, vol. 96(6), pages 912-916, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Wang & Baizhao Ren & Bin Zhao & Peng Liu & Jiwang Zhang, 2022. "Comparative Yield and Photosynthetic Characteristics of Two Corn ( Zea mays L.) Hybrids Differing in Maturity under Different Irrigation Treatments," Agriculture, MDPI, vol. 12(3), pages 1-16, March.
    2. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Miodrag Tolimir & Branka Kresović & Katarina Gajić & Violeta Anđelković & Milan Brankov & Marijana Dugalić & Boško Gajić, 2024. "Integrated effect of irrigation rate and plant density on yield, yield components and water use efficiency of maize," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(8), pages 475-482.
    4. Mailhol, J.-C. & Albasha, R. & Cheviron, B. & Lopez, J.-M. & Ruelle, P. & Dejean, C., 2018. "The PILOTE-N model for improving water and nitrogen management practices: Application in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 204(C), pages 162-179.
    5. Qi, Zhi & Gao, Ya & Sun, Chen & Ramos, Tiago B. & Mu, Danning & Xun, Yihao & Huang, Guanhua & Xu, Xu, 2024. "Assessing water-nitrogen use, crop growth and economic benefits for maize in upper Yellow River basin: Feasibility analysis for border and drip irrigation," Agricultural Water Management, Elsevier, vol. 295(C).
    6. repec:caa:jnlpse:v:preprint:id:155-2024-pse is not listed on IDEAS
    7. Kumar Jha, Shiva & Ramatshaba, Tefo Steve & Wang, Guangshuai & Liang, Yueping & Liu, Hao & Gao, Yang & Duan, Aiwang, 2019. "Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain," Agricultural Water Management, Elsevier, vol. 217(C), pages 292-302.
    8. Burak, Selmin & Samanlioglu, Funda & Ülker, Duygu, 2022. "Evaluation of irrigation methods in Söke Plain with HF-AHP-PROMETHEE II hybrid MCDM method," Agricultural Water Management, Elsevier, vol. 271(C).
    9. Sunling, Yang & Shahzad, Ali & Wang, Meng & Xi, Yueling & Shaik, Mohammed Rafi & Khan, Mujeeb, 2024. "Urease and nitrification inhibitors with drip fertigation strategies to mitigate global warming potential and improve water-nitrogen efficiency of maize under semi-arid regions," Agricultural Water Management, Elsevier, vol. 295(C).
    10. Serra-Wittling, Claire & Molle, Bruno & Cheviron, Bruno, 2019. "Plot level assessment of irrigation water savings due to the shift from sprinkler to localized irrigation systems or to the use of soil hydric status probes. Application in the French context," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kresović, Branka & Tapanarova, Angelina & Tomić, Zorica & Životić, Ljubomir & Vujović, Dragan & Sredojević, Zorica & Gajić, Boško, 2016. "Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate," Agricultural Water Management, Elsevier, vol. 169(C), pages 34-43.
    2. Murley, Cameron B. & Sharma, Sumit & Warren, Jason G. & Arnall, Daryl B. & Raun, William R., 2018. "Yield response of corn and grain sorghum to row offsets on subsurface drip laterals," Agricultural Water Management, Elsevier, vol. 208(C), pages 357-362.
    3. Sampathkumar, T. & Pandian, B.J. & Rangaswamy, M.V. & Manickasundaram, P. & Jeyakumar, P., 2013. "Influence of deficit irrigation on growth, yield and yield parameters of cotton–maize cropping sequence," Agricultural Water Management, Elsevier, vol. 130(C), pages 90-102.
    4. Greaves, Geneille E. & Wang, Yu-Min, 2017. "Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment," Agricultural Water Management, Elsevier, vol. 188(C), pages 115-125.
    5. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    6. Rodrigues, Gonçalo C. & Paredes, Paula & Gonçalves, José M. & Alves, Isabel & Pereira, Luis S., 2013. "Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns," Agricultural Water Management, Elsevier, vol. 126(C), pages 85-96.
    7. Zhou, Lifeng & Feng, Hao & Zhao, Ying & Qi, Zhijuan & Zhang, Tibin & He, Jianqiang & Dyck, Miles, 2017. "Drip irrigation lateral spacing and mulching affects the wetting pattern, shoot-root regulation, and yield of maize in a sand-layered soil," Agricultural Water Management, Elsevier, vol. 184(C), pages 114-123.
    8. Dagdelen, Necdet & Yilmaz, Ersel & Sezgin, Fuat & Gurbuz, Talih, 2006. "Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 63-85, April.
    9. Rivera-Hernández, B. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Juárez-López, J.F. & Aceves-Navarro, L.A., 2010. "Morphological quality of sweet corn (Zea mays L.) ears as response to soil moisture tension and phosphate fertilization in Campeche, Mexico," Agricultural Water Management, Elsevier, vol. 97(9), pages 1365-1374, September.
    10. Allakonon, M. Gloriose B. & Zakari, Sissou & Tovihoudji, Pierre G. & Fatondji, A. Sènami & Akponikpè, P.B. Irénikatché, 2022. "Grain yield, actual evapotranspiration and water productivity responses of maize crop to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 270(C).
    11. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    12. Iqbal, M. Anjum & Bodner, G. & Heng, L.K. & Eitzinger, J. & Hassan, A., 2010. "Assessing yield optimization and water reduction potential for summer-sown and spring-sown maize in Pakistan," Agricultural Water Management, Elsevier, vol. 97(5), pages 731-737, May.
    13. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    14. Motazedian, Azam & Kazemeini, Seyed Abdolreza & Bahrani, Mohammad Jafar, 2019. "Sweet corn growth and GrainYield as influenced by irrigation and wheat residue management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    15. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    16. Robel Admasu & Abraham W Michael & Tilahun Hordofa, 2019. "Senior Irrigation Researcher, Melkassa Agricultural Research Center, Ethiopia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 16(4), pages 83-87, January.
    17. Attia, Ahmed & El-Hendawy, Salah & Al-Suhaibani, Nasser & Alotaibi, Majed & Tahir, Muhammad Usman & Kamal, Khaled Y., 2021. "Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation," Agricultural Water Management, Elsevier, vol. 249(C).
    18. Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
    19. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    20. Széles, Adrienn Ványiné & Megyes, Attila & Nagy, János, 2012. "Irrigation and nitrogen effects on the leaf chlorophyll content and grain yield of maize in different crop years," Agricultural Water Management, Elsevier, vol. 107(C), pages 133-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:124:y:2013:i:c:p:77-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.