IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v289y2023ics0378377423004316.html
   My bibliography  Save this article

Integrated application of fertilization and reduced irrigation improved maize (Zea mays L.) yield, crop water productivity and nitrogen use efficiency in a semi-arid region

Author

Listed:
  • Wang, Ning
  • Zhang, Tonghui
  • Cong, Anqi
  • Lian, Jie

Abstract

Water scarcity as well as soil degradation and environmental problems potentially caused by excessive application of chemical fertilizers are major challenges to agricultural production in semi-arid areas. It is crucial to explore a suitable and eco-friendly strategy to achieve sustainable production of maize with high crop water productivity and nitrogen use efficiency. Here, a two-year field experiment with three irrigation levels of W1 (220 mm), W2 (140 mm) and W3 (60 mm), and five fertilization types of no fertilizer (CK), chemical fertilizer (CF), bio-fertilizer combined with CF (CFB), organic fertilizer combined with 70% CF (CFO) and bio-fertilizer combined with CFO (CFOB) was conducted to investigate the effect on dry matter, N uptake and remobilization, grain yield, crop water productivity, nitrogen use efficiency and economic benefits of maize in 2021 and 2022. The results showed that the W2 and W3 decreased in the leaf area index, photosynthetic rate, dry matter accumulation, the maximum dry matter accumulation rate and actual crop evapotranspiration. Under W1 condition, the CFB improved the growth of maize, increased the dry matter and nitrogen accumulation and yield, with 8.1% and 7.4% higher than CF in 2021 and 2022, respectively. Under deficit irrigation (W2 and W3), CFOB significantly increased the leaf area index, photosynthetic rate, dry matter accumulation at later growth stage, in addition, CFOB increased the post-silking N uptake and the percentage in total N content, finally improved the grain yield with 23.8% and 22.8% under W2, 22.5% and 25.7% under W3 higher than that of the CF in 2021 and 2022, respectively. Irrigation and fertilizer showed a coupling effect on grain yield, crop water productivity, agronomy efficiency and nitrogen use efficiency. Overall, the CFOB under moderate deficit (W2) exhibited the highest water productivity, nitrogen use efficiency and economic benefits, as well as maintained the high yield, could be a promising approach to sustainable development of local maize.

Suggested Citation

  • Wang, Ning & Zhang, Tonghui & Cong, Anqi & Lian, Jie, 2023. "Integrated application of fertilization and reduced irrigation improved maize (Zea mays L.) yield, crop water productivity and nitrogen use efficiency in a semi-arid region," Agricultural Water Management, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004316
    DOI: 10.1016/j.agwat.2023.108566
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Cheng & Feng, Hao & Luo, Xiaoqi & Li, Yue & Wang, Naijiang & Wu, Wenjie & Zhang, Tibin & Dong, Qin’ge & Siddique, Kadambot H.M., 2022. "Limited irrigation and fertilization in sand-layered soil increases nitrogen use efficiency and economic benefits under film mulched ridge-furrow irrigation in arid areas," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Wu, You & Si, Wei & Yan, Shicheng & Wu, Lifeng & Zhao, Wenju & Zhang, Jiale & Zhang, Fucang & Fan, Junliang, 2023. "Water consumption, soil nitrate-nitrogen residue and fruit yield of drip-irrigated greenhouse tomato under various irrigation levels and fertilization practices," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Li, Changjian & Xiong, Yunwu & Cui, Zhen & Huang, Quanzhong & Xu, Xu & Han, Wenguang & Huang, Guanhua, 2020. "Effect of irrigation and fertilization regimes on grain yield, water and nitrogen productivity of mulching cultivated maize (Zea mays L.) in the Hetao Irrigation District of China," Agricultural Water Management, Elsevier, vol. 232(C).
    4. Wang, Xiaolin & Ren, Yuanyuan & Zhang, Suiqi & Chen, Yinglong & Wang, Nan, 2017. "Applications of organic manure increased maize (Zea mays L.) yield and water productivity in a semi-arid region," Agricultural Water Management, Elsevier, vol. 187(C), pages 88-98.
    5. Lu, Junsheng & Xiang, Youzhen & Fan, Junliang & Zhang, Fucang & Hu, Tiantian, 2021. "Sustainable high grain yield, nitrogen use efficiency and water productivity can be achieved in wheat-maize rotation system by changing irrigation and fertilization strategy," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Guo, Jinjin & Fan, Junliang & Xiang, Youzhen & Zhang, Fucang & Yan, Shicheng & Zhang, Xueyan & Zheng, Jing & Li, Yuepeng & Tang, Zijun & Li, Zhijun, 2022. "Coupling effects of irrigation amount and nitrogen fertilizer type on grain yield, water productivity and nitrogen use efficiency of drip-irrigated maize," Agricultural Water Management, Elsevier, vol. 261(C).
    7. Li, Jie & Yang, Qiliang & Shi, Zhengtao & Zang, Zhennan & Liu, Xiaogang, 2021. "Effects of deficit irrigation and organic fertilizer on yield, saponin and disease incidence in Panax notoginseng under shaded conditions," Agricultural Water Management, Elsevier, vol. 256(C).
    8. Li, Guanghao & Zhao, Bin & Dong, Shuting & Zhang, Jiwang & Liu, Peng & Lu, Weiping, 2020. "Controlled-release urea combining with optimal irrigation improved grain yield, nitrogen uptake, and growth of maize," Agricultural Water Management, Elsevier, vol. 227(C).
    9. Sampathkumar, T. & Pandian, B.J. & Rangaswamy, M.V. & Manickasundaram, P. & Jeyakumar, P., 2013. "Influence of deficit irrigation on growth, yield and yield parameters of cotton–maize cropping sequence," Agricultural Water Management, Elsevier, vol. 130(C), pages 90-102.
    10. Qi, Dongliang & Hu, Tiantian & Liu, Tingting, 2020. "Biomass accumulation and distribution, yield formation and water use efficiency responses of maize (Zea mays L.) to nitrogen supply methods under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 230(C).
    11. Huijie Chen & Jiamiao Zhao & Jing Jiang & Zhiguo Zhao & Zhiyong Guan & Sumei Chen & Fadi Chen & Weimin Fang & Shuang Zhao, 2021. "Effects of Inorganic, Organic and Bio-Organic Fertilizer on Growth, Rhizosphere Soil Microflora and Soil Function Sustainability in Chrysanthemum Monoculture," Agriculture, MDPI, vol. 11(12), pages 1-14, December.
    12. Liu, Chang-An & Li, Feng-Rui & Zhou, Li-Min & Zhang, Rong-He & Yu-Jia, & Lin, Shi-Ling & Wang, Li-Jun & Siddique, Kadambot H.M. & Li, Feng-Min, 2013. "Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 117(C), pages 123-132.
    13. Yan, Fulai & Zhang, Fucang & Fan, Xingke & Fan, Junliang & Wang, Ying & Zou, Haiyang & Wang, Haidong & Li, Guodong, 2021. "Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    14. Wang, Feng & Xie, Ruizhi & Ming, Bo & Wang, Keru & Hou, Peng & Chen, Jianglu & Liu, Guangzhou & Zhang, Guoqiang & Xue, Jun & Li, Shaokun, 2021. "Dry matter accumulation after silking and kernel weight are the key factors for increasing maize yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 254(C).
    15. Lu, Jia & Shao, Guangcheng & Cui, Jintao & Wang, Xiaojun & Keabetswe, Larona, 2019. "Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 222(C), pages 301-312.
    16. Wang, Dan & Mo, Yan & Li, Guangyong & Wilkerson, Carol Jo & Hoogenboom, Gerrit, 2021. "Improving maize production and decreasing nitrogen residue in soil using mulched drip fertigation," Agricultural Water Management, Elsevier, vol. 251(C).
    17. Li, Fusheng & Yu, Jiangmin & Nong, Mengling & Kang, Shaozhong & Zhang, Jianhua, 2010. "Partial root-zone irrigation enhanced soil enzyme activities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers," Agricultural Water Management, Elsevier, vol. 97(2), pages 231-239, February.
    18. Cheng, Yu & Luo, Min & Zhang, Tonggang & Yan, Sihui & Wang, Chun & Dong, Qin’ge & Feng, Hao & Zhang, Tibin & Kisekka, Isaya, 2023. "Organic substitution improves soil structure and water and nitrogen status to promote sunflower (Helianthus annuus L.) growth in an arid saline area," Agricultural Water Management, Elsevier, vol. 283(C).
    19. Sarker, Khokan Kumer & Hossain, Akbar & Timsina, Jagadish & Biswas, Sujit Kumar & Malone, Sparkle L. & Alam, Md. Khairul & Loescher, Henry W. & Bazzaz, Mahfuz, 2020. "Alternate furrow irrigation can maintain grain yield and nutrient content, and increase crop water productivity in dry season maize in sub-tropical climate of South Asia," Agricultural Water Management, Elsevier, vol. 238(C).
    20. Qiu, Rangjian & Liu, Chunwei & Cui, Ningbo & Wu, Youjie & Wang, Zhenchang & Li, Gen, 2019. "Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    21. Kresović, Branka & Tapanarova, Angelina & Tomić, Zorica & Životić, Ljubomir & Vujović, Dragan & Sredojević, Zorica & Gajić, Boško, 2016. "Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate," Agricultural Water Management, Elsevier, vol. 169(C), pages 34-43.
    22. Zhang, Yan & Ma, Qian & Liu, Donghua & Sun, Lefeng & Ren, Xiaolong & Ali, Shahzad & Zhang, Peng & Jia, Zhikuan, 2018. "Effects of different fertilizer strategies on soil water utilization and maize yield in the ridge and furrow rainfall harvesting system in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 208(C), pages 414-421.
    23. Allakonon, M. Gloriose B. & Zakari, Sissou & Tovihoudji, Pierre G. & Fatondji, A. Sènami & Akponikpè, P.B. Irénikatché, 2022. "Grain yield, actual evapotranspiration and water productivity responses of maize crop to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 270(C).
    24. Yang, Yang & Luo, Yufeng & Wu, Conglin & Zheng, Hezhen & Zhang, Lei & Cui, Yuanlai & Sun, Ningning & Wang, Li, 2019. "Evaluation of six equations for daily reference evapotranspiration estimating using public weather forecast message for different climate regions across China," Agricultural Water Management, Elsevier, vol. 222(C), pages 386-399.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Jinjin & Fan, Junliang & Xiang, Youzhen & Zhang, Fucang & Yan, Shicheng & Zhang, Xueyan & Zheng, Jing & Li, Yuepeng & Tang, Zijun & Li, Zhijun, 2022. "Coupling effects of irrigation amount and nitrogen fertilizer type on grain yield, water productivity and nitrogen use efficiency of drip-irrigated maize," Agricultural Water Management, Elsevier, vol. 261(C).
    2. Li, Cheng & Feng, Hao & Luo, Xiaoqi & Li, Yue & Wang, Naijiang & Wu, Wenjie & Zhang, Tibin & Dong, Qin’ge & Siddique, Kadambot H.M., 2022. "Limited irrigation and fertilization in sand-layered soil increases nitrogen use efficiency and economic benefits under film mulched ridge-furrow irrigation in arid areas," Agricultural Water Management, Elsevier, vol. 262(C).
    3. Qiang, Shengcai & Zhang, Yan & Zhao, Hong & Fan, Junliang & Zhang, Fucang & Sun, Min & Gao, Zhiqiang, 2022. "Combined effects of urea type and placement depth on grain yield, water productivity and nitrogen use efficiency of rain-fed spring maize in northern China," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Qi, Dongliang & Pan, Chen, 2022. "Responses of shoot biomass accumulation, distribution, and nitrogen use efficiency of maize to nitrogen application rates under waterlogging," Agricultural Water Management, Elsevier, vol. 261(C).
    5. Xiao, Chao & Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Li, Yi & Sun, Shikun & Pulatov, Alim, 2021. "Optimizing irrigation amount and fertilization rate of drip-fertigated spring maize in northwest China based on multi-level fuzzy comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 257(C).
    6. Irmak, Suat & Mohammed, Ali T. & Drudik, Matthew, 2023. "Maize nitrogen uptake, grain nitrogen concentration and root-zone residual nitrate nitrogen response under center pivot, subsurface drip and surface (furrow) irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
    7. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    8. Xufeng Li & Juanjuan Ma & Lijian Zheng & Jinping Chen & Xihuan Sun & Xianghong Guo, 2022. "Optimization of the Regulated Deficit Irrigation Strategy for Greenhouse Tomato Based on the Fuzzy Borda Model," Agriculture, MDPI, vol. 12(3), pages 1-16, February.
    9. Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Liu, Zhihe & Agathokleous, Evgenios & Yang, Xiumei & Hu, Wei & Clothier, Brent, 2023. "Short–term forecasting of daily evapotranspiration from rice using a modified Priestley–Taylor model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 277(C).
    10. Kamran, Muhammad & Yan, Zhengang & Chang, Shenghua & Ning, Jiao & Lou, Shanning & Ahmad, Irshad & Ghani, Muhammad Usman & Arif, Muhammad & El Sabagh, Ayman & Hou, Fujiang, 2023. "Interactive effects of reduced irrigation and nitrogen fertilization on resource use efficiency, forage nutritive quality, yield, and economic benefits of spring wheat in the arid region of Northwest ," Agricultural Water Management, Elsevier, vol. 275(C).
    11. Qiang, Shengcai & Zhang, Yan & Fan, Junliang & Zhang, Fucang & Sun, Min & Gao, Zhiqiang, 2022. "Combined effects of ridge–furrow ratio and urea type on grain yield and water productivity of rainfed winter wheat on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 261(C).
    12. Sarker, Khokan Kumer & Hossain, Akbar & Timsina, Jagadish & Biswas, Sujit Kumar & Malone, Sparkle L. & Alam, Md. Khairul & Loescher, Henry W. & Bazzaz, Mahfuz, 2020. "Alternate furrow irrigation can maintain grain yield and nutrient content, and increase crop water productivity in dry season maize in sub-tropical climate of South Asia," Agricultural Water Management, Elsevier, vol. 238(C).
    13. Liu, Yu & Li, Shilei & Liu, Yanxin & Shen, Hongzheng & Huang, Tingting & Ma, Xiaoyi, 2023. "Optimization of a nitrogen fertilizer application scheme for spring maize in full-film double-ridge furrow in Longzhong, China," Agricultural Water Management, Elsevier, vol. 290(C).
    14. Duan, Chenxiao & Li, Jiabei & Zhang, Binbin & Wu, Shufang & Fan, Junliang & Feng, Hao & He, Jianqiang & Siddique, Kadambot H.M., 2023. "Effect of bio-organic fertilizer derived from agricultural waste resources on soil properties and winter wheat (Triticum aestivum L.) yield in semi-humid drought-prone regions," Agricultural Water Management, Elsevier, vol. 289(C).
    15. Ran, Junjun & Ran, Hui & Ma, Longfei & Jennings, Stewart A. & Yu, Tinggao & Deng, Xin & Yao, Ning & Hu, Xiaotao, 2023. "Quantifying water productivity and nitrogen uptake of maize under water and nitrogen stress in arid Northwest China," Agricultural Water Management, Elsevier, vol. 285(C).
    16. Jia, Dianyong & Dai, Xinglong & Xie, Yuli & He, Mingrong, 2021. "Alternate furrow irrigation improves grain yield and nitrogen use efficiency in winter wheat," Agricultural Water Management, Elsevier, vol. 244(C).
    17. Dou, Zhiyao & Feng, Hanlong & Zhang, Hao & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun & Fan, Junliang, 2023. "Silicon application mitigated the adverse effects of salt stress and deficit irrigation on drip-irrigated greenhouse tomato," Agricultural Water Management, Elsevier, vol. 289(C).
    18. Song, Zengzhen & Peng, Yuxing & Li, Zizhong & Zhang, Shuai & Liu, Xiaotong & Tan, Senwen, 2022. "Two irrigation events can achieve relatively high, stable corn yield and water productivity in aeolian sandy soil of northeast China," Agricultural Water Management, Elsevier, vol. 260(C).
    19. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Qian Li & Yan Chen & Shikun Sun & Muyuan Zhu & Jing Xue & Zihan Gao & Jinfeng Zhao & Yihe Tang, 2022. "Research on Crop Irrigation Schedules Under Deficit Irrigation—A Meta-analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4799-4817, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.