IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v48y2021i1p321-348.html
   My bibliography  Save this article

Max‐infinitely divisible models and inference for spatial extremes

Author

Listed:
  • Raphaël Huser
  • Thomas Opitz
  • Emeric Thibaud

Abstract

For many environmental processes, recent studies have shown that the dependence strength is decreasing when quantile levels increase. This implies that the popular max‐stable models are inadequate to capture the rate of joint tail decay, and to estimate joint extremal probabilities beyond observed levels. We here develop a more flexible modeling framework based on the class of max‐infinitely divisible processes, which extend max‐stable processes while retaining dependence properties that are natural for maxima. We propose two parametric constructions for max‐infinitely divisible models, which relax the max‐stability property but remain close to some popular max‐stable models obtained as special cases. The first model considers maxima over a finite, random number of independent observations, while the second model generalizes the spectral representation of max‐stable processes. Inference is performed using a pairwise likelihood. We illustrate the benefits of our new modeling framework on Dutch wind gust maxima calculated over different time units. Results strongly suggest that our proposed models outperform other natural models, such as the Student‐t copula process and its max‐stable limit, even for large block sizes.

Suggested Citation

  • Raphaël Huser & Thomas Opitz & Emeric Thibaud, 2021. "Max‐infinitely divisible models and inference for spatial extremes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 321-348, March.
  • Handle: RePEc:bla:scjsta:v:48:y:2021:i:1:p:321-348
    DOI: 10.1111/sjos.12491
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12491
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Emeric Thibaud & Thomas Opitz, 2015. "Efficient inference and simulation for elliptical Pareto processes," Biometrika, Biometrika Trust, vol. 102(4), pages 855-870.
    2. Hashorva, Enkelejd, 2010. "On the residual dependence index of elliptical distributions," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1070-1078, July.
    3. Peng Ding, 2016. "On the Conditional Distribution of the Multivariate Distribution," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 293-295, July.
    4. Alec Stephenson & Jonathan Tawn, 2005. "Exploiting occurrence times in likelihood inference for componentwise maxima," Biometrika, Biometrika Trust, vol. 92(1), pages 213-227, March.
    5. Daniela Castro-Camilo & Raphaël Huser, 2020. "Local Likelihood Estimation of Complex Tail Dependence Structures, Applied to U.S. Precipitation Extremes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1037-1054, July.
    6. Raphaël Huser & Jennifer L. Wadsworth, 2019. "Modeling Spatial Processes with Unknown Extremal Dependence Class," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 434-444, January.
    7. Padoan, Simone A., 2013. "Extreme dependence models based on event magnitude," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 1-19.
    8. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brück, Florian, 2023. "Exact simulation of continuous max-id processes with applications to exchangeable max-id sequences," Journal of Multivariate Analysis, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    2. Lorenzo Ricci & David Veredas, 2012. "TailCoR," Working Papers 1227, Banco de España.
      • Sla{dj}ana Babi'c & Christophe Ley & Lorenzo Ricci & David Veredas, 2020. "TailCoR," Papers 2011.14817, arXiv.org.
    3. Fung, Thomas & Seneta, Eugene, 2016. "Tail asymptotics for the bivariate skew normal," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 129-138.
    4. Fung, Thomas & Seneta, Eugene, 2021. "Tail asymptotics for the bivariate equi-skew generalized hyperbolic distribution and its Variance-Gamma special case," Statistics & Probability Letters, Elsevier, vol. 178(C).
    5. Raphaël de Fondeville & Anthony C. Davison, 2022. "Functional peaks‐over‐threshold analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1392-1422, September.
    6. Rishikesh Yadav & Raphaël Huser & Thomas Opitz, 2021. "Spatial hierarchical modeling of threshold exceedances using rate mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    7. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
    8. Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
    9. Hu, Shuang & Peng, Zuoxiang & Nadarajah, Saralees, 2022. "Tail dependence functions of the bivariate Hüsler–Reiss model," Statistics & Probability Letters, Elsevier, vol. 180(C).
    10. Federica Stolf & Antonio Canale, 2023. "A hierarchical Bayesian non‐asymptotic extreme value model for spatial data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    11. Nolde, Natalia, 2014. "Geometric interpretation of the residual dependence coefficient," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 85-95.
    12. Wu, Shaomin, 2014. "Construction of asymmetric copulas and its application in two-dimensional reliability modelling," European Journal of Operational Research, Elsevier, vol. 238(2), pages 476-485.
    13. Yuya Sasaki & Yulong Wang, 2022. "Fixed-k Inference for Conditional Extremal Quantiles," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 829-837, April.
    14. Ellington, Michael, 2022. "Fat tails, serial dependence, and implied volatility index connections," European Journal of Operational Research, Elsevier, vol. 299(2), pages 768-779.
    15. César Garcia-Gomez & Ana Pérez & Mercedes Prieto-Alaiz, 2022. "The evolution of poverty in the EU-28: a further look based on multivariate tail dependence," Working Papers 605, ECINEQ, Society for the Study of Economic Inequality.
    16. Pavel Krupskii, 2017. "Copula-based measures of reflection and permutation asymmetry and statistical tests," Statistical Papers, Springer, vol. 58(4), pages 1165-1187, December.
    17. Joe, Harry & Li, Haijun, 2019. "Tail densities of skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 421-435.
    18. Daniela Castro-Camilo & Raphaël Huser & Håvard Rue, 2019. "A Spliced Gamma-Generalized Pareto Model for Short-Term Extreme Wind Speed Probabilistic Forecasting," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 517-534, September.
    19. Joe, Harry & Sang, Peijun, 2016. "Multivariate models for dependent clusters of variables with conditional independence given aggregation variables," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 114-132.
    20. Auld, Tom & Linton, Oliver, 2019. "The behaviour of betting and currency markets on the night of the EU referendum," International Journal of Forecasting, Elsevier, vol. 35(1), pages 371-389.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:48:y:2021:i:1:p:321-348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.