IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v122y2013icp1-19.html
   My bibliography  Save this article

Extreme dependence models based on event magnitude

Author

Listed:
  • Padoan, Simone A.

Abstract

By considering pointwise maxima of independent stationary random processes with dependent Cauchy marginals, we define a new process whose univariate limit distributions are Fréchet and the bivariate distributions interpolate between independence and complete dependence. The limiting dependence structure that emerges is suitable to describe dependent margins. However, we show that it is possible to enable different levels of dependence according to the magnitude of extreme events, e.g. the dependence decreases as the extremes’ intensity increases. In particular, with the class of random fields defined here, the dependence of spatial extremes can be modeled. We describe some properties of the dependence structure and we illustrate its utility in assessing the dependence. Combining marginal likelihoods through the composite likelihood approach, we are able to estimate the extremal dependence of extreme values observed in space. We convey the model’s capabilities through an analysis of sea-levels recorded along the coast of the United Kingdom.

Suggested Citation

  • Padoan, Simone A., 2013. "Extreme dependence models based on event magnitude," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 1-19.
  • Handle: RePEc:eee:jmvana:v:122:y:2013:i:c:p:1-19
    DOI: 10.1016/j.jmva.2013.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13001413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Bortot & S. Coles & J. Tawn, 2000. "The multivariate Gaussian tail model: an application to oceanographic data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(1), pages 31-049.
    2. Cristiano Varin & Paolo Vidoni, 2005. "A note on composite likelihood inference and model selection," Biometrika, Biometrika Trust, vol. 92(3), pages 519-528, September.
    3. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    4. Jennifer L. Wadsworth & Jonathan A. Tawn, 2012. "Dependence modelling for spatial extremes," Biometrika, Biometrika Trust, vol. 99(2), pages 253-272.
    5. Padoan, Simone A., 2011. "Multivariate extreme models based on underlying skew-t and skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 977-991, May.
    6. Omey, E. & Rachev, S. T., 1991. "Rates of convergence in multivariate extreme value theory," Journal of Multivariate Analysis, Elsevier, vol. 38(1), pages 36-50, July.
    7. Padoan, S. A. & Ribatet, M. & Sisson, S. A., 2010. "Likelihood-Based Inference for Max-Stable Processes," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 263-277.
    8. Hüsler, Jürg & Reiss, Rolf-Dieter, 1989. "Maxima of normal random vectors: Between independence and complete dependence," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 283-286, February.
    9. Kabluchko, Zakhar & Schlather, Martin, 2010. "Ergodic properties of max-infinitely divisible processes," Stochastic Processes and their Applications, Elsevier, vol. 120(3), pages 281-295, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Peng & Huser, Raphaël & Opitz, Thomas, 2024. "Exact Simulation of Max-Infinitely Divisible Processes," Econometrics and Statistics, Elsevier, vol. 30(C), pages 96-109.
    2. Raphaël Huser & Thomas Opitz & Emeric Thibaud, 2021. "Max‐infinitely divisible models and inference for spatial extremes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 321-348, March.
    3. Brück, Florian, 2023. "Exact simulation of continuous max-id processes with applications to exchangeable max-id sequences," Journal of Multivariate Analysis, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Abu-Awwad & V. Maume-Deschamps & P. Ribereau, 2020. "Fitting spatial max-mixture processes with unknown extremal dependence class: an exploratory analysis tool," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 479-522, June.
    2. Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
    3. Samuel A. Morris & Brian J. Reich & Emeric Thibaud & Daniel Cooley, 2017. "A space-time skew-t model for threshold exceedances," Biometrics, The International Biometric Society, vol. 73(3), pages 749-758, September.
    4. Papastathopoulos, Ioannis & Tawn, Jonathan A., 2016. "Conditioned limit laws for inverted max-stable processes," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 214-228.
    5. Robert, Christian Y., 2013. "Some new classes of stationary max-stable random fields," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1496-1503.
    6. Michael Falk & René Michel, 2006. "Testing for Tail Independence in Extreme Value models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 261-290, June.
    7. Falk, Michael & Reiss, Rolf-Dieter, 2005. "On Pickands coordinates in arbitrary dimensions," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 426-453, February.
    8. Frick, Melanie & Reiss, Rolf-Dieter, 2013. "Expansions and penultimate distributions of maxima of bivariate normal random vectors," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2563-2568.
    9. Paola Bortot & Carlo Gaetan, 2016. "Latent Process Modelling of Threshold Exceedances in Hourly Rainfall Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 531-547, September.
    10. Schlather, Martin, 2001. "Examples for the coefficient of tail dependence and the domain of attraction of a bivariate extreme value distribution," Statistics & Probability Letters, Elsevier, vol. 53(3), pages 325-329, June.
    11. Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Richards, Jordan & Tawn, Jonathan A., 2022. "On the tail behaviour of aggregated random variables," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    14. Boris Beranger & Simone A. Padoan & Scott A. Sisson, 2017. "Models for Extremal Dependence Derived from Skew-symmetric Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 21-45, March.
    15. Padoan, Simone A., 2011. "Multivariate extreme models based on underlying skew-t and skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 977-991, May.
    16. Erhardt, Robert J. & Smith, Richard L., 2012. "Approximate Bayesian computing for spatial extremes," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1468-1481.
    17. Koch, Erwan & Robert, Christian Y., 2022. "Stochastic derivative estimation for max-stable random fields," European Journal of Operational Research, Elsevier, vol. 302(2), pages 575-588.
    18. Curtis B. Storlie & Brian J. Reich & William N. Rust & Lawrence O. Ticknor & Amanda M. Bonnie & Andrew J. Montoya & Sarah E. Michalak, 2017. "Spatiotemporal Modeling of Node Temperatures in Supercomputers," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 92-108, January.
    19. Qiurong Cui & Zhengjun Zhang, 2018. "Max-Linear Competing Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 62-74, January.
    20. M. Ghil & Pascal Yiou & Stéphane Hallegatte & B. D. Malamud & P. Naveau & A. Soloviev & P. Friederichs & V. Keilis-Borok & D. Kondrashov & V. Kossobokov & O. Mestre & C. Nicolis & H. W. Rust & P. Sheb, 2011. "Extreme events: dynamics, statistics and prediction," Post-Print hal-00716514, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:122:y:2013:i:c:p:1-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.