IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1909.00294.html
   My bibliography  Save this paper

Fixed-k Inference for Conditional Extremal Quantiles

Author

Listed:
  • Yuya Sasaki
  • Yulong Wang

Abstract

We develop a new extreme value theory for repeated cross-sectional and panel data to construct asymptotically valid confidence intervals (CIs) for conditional extremal quantiles from a fixed number $k$ of nearest-neighbor tail observations. As a by-product, we also construct CIs for extremal quantiles of coefficients in linear random coefficient models. For any fixed $k$, the CIs are uniformly valid without parametric assumptions over a set of nonparametric data generating processes associated with various tail indices. Simulation studies show that our CIs exhibit superior small-sample coverage and length properties than alternative nonparametric methods based on asymptotic normality. Applying the proposed method to Natality Vital Statistics, we study factors of extremely low birth weights. We find that signs of major effects are the same as those found in preceding studies based on parametric models, but with different magnitudes.

Suggested Citation

  • Yuya Sasaki & Yulong Wang, 2019. "Fixed-k Inference for Conditional Extremal Quantiles," Papers 1909.00294, arXiv.org, revised Jul 2020.
  • Handle: RePEc:arx:papers:1909.00294
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1909.00294
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cheng Hsiao & M. Hashem Pesaran, 2004. "Random Coefficient Panel Data Models," CESifo Working Paper Series 1233, CESifo.
    2. Victor Chernozhukov & Iv'an Fern'andez-Val & Tetsuya Kaji, 2016. "Extremal Quantile Regression: An Overview," Papers 1612.06850, arXiv.org, revised Feb 2017.
    3. Chen, Joseph & Hong, Harrison & Stein, Jeremy C., 2001. "Forecasting crashes: trading volume, past returns, and conditional skewness in stock prices," Journal of Financial Economics, Elsevier, vol. 61(3), pages 345-381, September.
    4. David Backus & Mikhail Chernov & Ian Martin, 2011. "Disasters Implied by Equity Index Options," Journal of Finance, American Finance Association, vol. 66(6), pages 1969-2012, December.
    5. Gardes, Laurent & Girard, Stéphane & Lekina, Alexandre, 2010. "Functional nonparametric estimation of conditional extreme quantiles," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 419-433, February.
    6. Tim Bollerslev & Viktor Todorov, 2011. "Tails, Fears, and Risk Premia," Journal of Finance, American Finance Association, vol. 66(6), pages 2165-2211, December.
    7. Peng Ding, 2016. "On the Conditional Distribution of the Multivariate Distribution," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 293-295, July.
    8. Victor Chernozhukov & Iván Fernández-Val, 2011. "Inference for Extremal Conditional Quantile Models, with an Application to Market and Birthweight Risks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(2), pages 559-589.
    9. Ulrich K. Müller & Yulong Wang, 2017. "Fixed- Asymptotic Inference About Tail Properties," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1334-1343, July.
    10. Toda, Alexis Akira, 2019. "Wealth distribution with random discount factors," Journal of Monetary Economics, Elsevier, vol. 104(C), pages 101-113.
    11. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    12. Len Umantsev & Victor Chernozhukov, 2001. "Conditional value-at-risk: Aspects of modeling and estimation," Empirical Economics, Springer, vol. 26(1), pages 271-292.
    13. Tobias Adrian & Markus K. Brunnermeier, 2016. "CoVaR," American Economic Review, American Economic Association, vol. 106(7), pages 1705-1741, July.
      • Tobias Adrian & Markus K. Brunnermeier, 2008. "CoVaR," Staff Reports 348, Federal Reserve Bank of New York.
      • Tobias Adrian & Markus K. Brunnermeier, 2011. "CoVaR," NBER Working Papers 17454, National Bureau of Economic Research, Inc.
    14. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    15. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    16. Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018. "Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory," Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
    17. Charles I. Jones & Jihee Kim, 2018. "A Schumpeterian Model of Top Income Inequality," Journal of Political Economy, University of Chicago Press, vol. 126(5), pages 1785-1826.
    18. Huixia Judy Wang & Deyuan Li, 2013. "Estimation of Extreme Conditional Quantiles Through Power Transformation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1062-1074, September.
    19. Wang, Hansheng & Tsai, Chih-Ling, 2009. "Tail Index Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1233-1240.
    20. Daouia, Abdelaati & Gardes, Laurent & Girard, Stephane, 2011. "On kernel smoothing for extremal quantile regression," LIDAM Discussion Papers ISBA 2011031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Jason Abrevaya, 2001. "The effects of demographics and maternal behavior on the distribution of birth outcomes," Empirical Economics, Springer, vol. 26(1), pages 247-257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuya Sasaki & Yulong Wang, 2024. "Extreme Changes in Changes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 812-824, April.
    2. Nicolau, João & Rodrigues, Paulo M.M. & Stoykov, Marian Z., 2023. "Tail index estimation in the presence of covariates: Stock returns’ tail risk dynamics," Journal of Econometrics, Elsevier, vol. 235(2), pages 2266-2284.
    3. Hou, Yanxi & Leng, Xuan & Peng, Liang & Zhou, Yinggang, 2024. "Panel quantile regression for extreme risk," Journal of Econometrics, Elsevier, vol. 240(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Firpo, Sergio & Galvao, Antonio F. & Pinto, Cristine & Poirier, Alexandre & Sanroman, Graciela, 2022. "GMM quantile regression," Journal of Econometrics, Elsevier, vol. 230(2), pages 432-452.
    2. Ji Hyung Lee & Yuya Sasaki & Alexis Akira Toda & Yulong Wang, 2021. "Fixed-k Tail Regression: New Evidence on Tax and Wealth Inequality from Forbes 400," Papers 2105.10007, arXiv.org, revised Sep 2022.
    3. Martínez-Iriarte, Julián & Montes-Rojas, Gabriel & Sun, Yixiao, 2024. "Unconditional effects of general policy interventions," Journal of Econometrics, Elsevier, vol. 238(2).
    4. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam & Dungey, Mardi, 2018. "Quantile relationships between standard, diffusion and jump betas across Japanese banks," Journal of Asian Economics, Elsevier, vol. 59(C), pages 29-47.
    5. Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Reprint: Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 239(2).
    6. He, Fengyang & Wang, Huixia Judy & Zhou, Yuejin, 2022. "Extremal quantile autoregression for heavy-tailed time series," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    7. Chao, Shih-Kang & Härdle, Wolfgang K. & Yuan, Ming, 2021. "Factorisable Multitask Quantile Regression," Econometric Theory, Cambridge University Press, vol. 37(4), pages 794-816, August.
    8. Takuma Yoshida, 2021. "Additive models for extremal quantile regression with Pareto-type distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 103-134, March.
    9. Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 238(1).
    10. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    11. V L Miguéis & D F Benoit & D Van den Poel, 2013. "Enhanced decision support in credit scoring using Bayesian binary quantile regression," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(9), pages 1374-1383, September.
    12. Ellington, Michael, 2022. "Fat tails, serial dependence, and implied volatility index connections," European Journal of Operational Research, Elsevier, vol. 299(2), pages 768-779.
    13. Norman Maswanganyi & Caston Sigauke & Edmore Ranganai, 2021. "Prediction of Extreme Conditional Quantiles of Electricity Demand: An Application Using South African Data," Energies, MDPI, vol. 14(20), pages 1-21, October.
    14. Shah, Attaullah & Shah, Hamid Ali & Smith, Jason M. & Labianca, Giuseppe (Joe), 2017. "Judicial efficiency and capital structure: An international study," Journal of Corporate Finance, Elsevier, vol. 44(C), pages 255-274.
    15. Harris, Richard D.F. & Nguyen, Linh H. & Stoja, Evarist, 2019. "Systematic extreme downside risk," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 128-142.
    16. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    17. Kwon, Ji Ho, 2020. "Tail behavior of Bitcoin, the dollar, gold and the stock market index," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 67(C).
    18. Jian, Zhihong & Li, Xupei & Zhu, Zhican, 2022. "Extreme risk transmission channels between the stock index futures and spot markets: Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    19. Bryan Kelly & Hao Jiang, 2013. "Tail Risk and Asset Prices," NBER Working Papers 19375, National Bureau of Economic Research, Inc.
    20. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Inference for extremal regression with dependent heavy-tailed data," TSE Working Papers 22-1324, Toulouse School of Economics (TSE), revised 29 Aug 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1909.00294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.