IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v180y2022ics0167715221001978.html
   My bibliography  Save this article

Tail dependence functions of the bivariate Hüsler–Reiss model

Author

Listed:
  • Hu, Shuang
  • Peng, Zuoxiang
  • Nadarajah, Saralees

Abstract

The tail dependence coefficient, a special case of the tail dependence function, measures extremal dependence between two random variables. It is known that the tail dependence coefficient of bivariate Gaussian random vectors with constant correlation coefficient |ρ|<1 is zero with rate satisfying regular variation at zero. In this note, we consider the tail dependence function of bivariate Gaussian random vectors with dynamic correlation coefficient ρn satisfying the Hüsler–Reiss condition. We also establish the convergence rates to the tail dependence functions under some refined Hüsler–Reiss conditions. By-products are the tail orders and tail order functions with related expansions.

Suggested Citation

  • Hu, Shuang & Peng, Zuoxiang & Nadarajah, Saralees, 2022. "Tail dependence functions of the bivariate Hüsler–Reiss model," Statistics & Probability Letters, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:stapro:v:180:y:2022:i:c:s0167715221001978
    DOI: 10.1016/j.spl.2021.109235
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715221001978
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2021.109235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frick, Melanie & Reiss, Rolf-Dieter, 2013. "Expansions and penultimate distributions of maxima of bivariate normal random vectors," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2563-2568.
    2. Fung, Thomas & Seneta, Eugene, 2014. "Convergence rate to a lower tail dependence coefficient of a skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 62-72.
    3. Hashorva, Enkelejd, 2010. "On the residual dependence index of elliptical distributions," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1070-1078, July.
    4. Enkelejd Hashorva & Zuoxiang Peng & Zhichao Weng, 2016. "Higher-order expansions of distributions of maxima in a Hüsler-Reiss model," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 181-196, March.
    5. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    6. Nolde, Natalia, 2014. "Geometric interpretation of the residual dependence coefficient," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 85-95.
    7. Fung, Thomas & Seneta, Eugene, 2010. "Tail dependence for two skew t distributions," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 784-791, May.
    8. Fung, Thomas & Seneta, Eugene, 2016. "Tail asymptotics for the bivariate skew normal," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 129-138.
    9. Thomas Fung & Eugene Seneta, 2018. "Quantile Function Expansion Using Regularly Varying Functions," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1091-1103, December.
    10. Hüsler, Jürg & Reiss, Rolf-Dieter, 1989. "Maxima of normal random vectors: Between independence and complete dependence," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 283-286, February.
    11. Sepanski, Jungsywan H., 2020. "A note on distortion effects on the strength of bivariate copula tail dependence," Statistics & Probability Letters, Elsevier, vol. 166(C).
    12. Thomas Fung & Eugene Seneta, 2010. "Tail dependence and skew distributions," Quantitative Finance, Taylor & Francis Journals, vol. 11(3), pages 327-333.
    13. Fung, Thomas & Seneta, Eugene, 2011. "The bivariate normal copula function is regularly varying," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1670-1676, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fung, Thomas & Seneta, Eugene, 2021. "Tail asymptotics for the bivariate equi-skew generalized hyperbolic distribution and its Variance-Gamma special case," Statistics & Probability Letters, Elsevier, vol. 178(C).
    2. Fung, Thomas & Seneta, Eugene, 2016. "Tail asymptotics for the bivariate skew normal," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 129-138.
    3. Xin Lao & Zuoxiang Peng & Saralees Nadarajah, 2023. "Tail Dependence Functions of Two Classes of Bivariate Skew Distributions," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
    4. Joe, Harry & Sang, Peijun, 2016. "Multivariate models for dependent clusters of variables with conditional independence given aggregation variables," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 114-132.
    5. Joe, Harry & Li, Haijun, 2019. "Tail densities of skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 421-435.
    6. Fung, Thomas & Seneta, Eugene, 2014. "Convergence rate to a lower tail dependence coefficient of a skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 62-72.
    7. Raphaël Huser & Thomas Opitz & Emeric Thibaud, 2021. "Max‐infinitely divisible models and inference for spatial extremes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 321-348, March.
    8. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Beranger, B. & Padoan, S.A. & Xu, Y. & Sisson, S.A., 2019. "Extremal properties of the multivariate extended skew-normal distribution, Part B," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 105-114.
    10. Efstathios Panayi & Gareth W. Peters, 2015. "Stochastic simulation framework for the limit order book using liquidity-motivated agents," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-52.
    11. Fung, Thomas & Seneta, Eugene, 2011. "The bivariate normal copula function is regularly varying," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1670-1676, November.
    12. Thomas Fung & Eugene Seneta, 2018. "Quantile Function Expansion Using Regularly Varying Functions," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1091-1103, December.
    13. Nolde, Natalia, 2014. "Geometric interpretation of the residual dependence coefficient," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 85-95.
    14. Lorenzo Ricci & David Veredas, 2012. "TailCoR," Working Papers 1227, Banco de España.
      • Sla{dj}ana Babi'c & Christophe Ley & Lorenzo Ricci & David Veredas, 2020. "TailCoR," Papers 2011.14817, arXiv.org.
    15. Wang, Rui & Liao, Xin & Peng, Zuoxiang, 2017. "Second-order expansions for maxima of dynamic bivariate normal copulas," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 275-283.
    16. Chung-Shin Liu & Meng-Shiuh Chang & Ximing Wu & Chin Man Chui, 2016. "Hedges or safe havens—revisit the role of gold and USD against stock: a multivariate extended skew- copula approach," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1763-1789, November.
    17. Lars Nørvang Andersen & Patrick J. Laub & Leonardo Rojas-Nandayapa, 2018. "Efficient Simulation for Dependent Rare Events with Applications to Extremes," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 385-409, March.
    18. Hashorva, Enkelejd & Peng, Liang & Weng, Zhichao, 2015. "Maxima of a triangular array of multivariate Gaussian sequence," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 62-72.
    19. Thomas Fung & Eugene Seneta, 2010. "Modelling and Estimation for Bivariate Financial Returns," International Statistical Review, International Statistical Institute, vol. 78(1), pages 117-133, April.
    20. Weng, Zhichao & Liao, Xin, 2017. "Second order expansions of distributions of maxima of bivariate Gaussian triangular arrays under power normalization," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 33-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:180:y:2022:i:c:s0167715221001978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.