IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v171y2019icp421-435.html
   My bibliography  Save this article

Tail densities of skew-elliptical distributions

Author

Listed:
  • Joe, Harry
  • Li, Haijun

Abstract

Skew-elliptical distributions constitute a large class of multivariate distributions that account for both skewness and a variety of tail properties. This class has simpler representations in terms of densities rather than cumulative distribution functions, and the tail density approach has previously been developed to study tail properties when multivariate densities have more tractable forms. The special skew-elliptical structure allows for derivations of specific forms for the tail densities for those skew-elliptical copulas that admit probability density functions, under heavy and light tail conditions on density generators. The tail densities of skew-elliptical copulas are explicit and depend only on tail properties of the underlying density generator and conditions on the skewness parameters. In the heavy-tail case skewness parameters affect tail densities of the skew-elliptical copulas more profoundly than that in the light tail case, whereas in the latter case the tail densities of skew-elliptical copulas are only proportional to the tail densities of symmetrical elliptical copulas. Various examples, including tail densities of skew-normal and skew-t distributions, are given.

Suggested Citation

  • Joe, Harry & Li, Haijun, 2019. "Tail densities of skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 421-435.
  • Handle: RePEc:eee:jmvana:v:171:y:2019:i:c:p:421-435
    DOI: 10.1016/j.jmva.2019.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17303949
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    2. Joe, Harry & Li, Haijun & Nikoloulopoulos, Aristidis K., 2010. "Tail dependence functions and vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 252-270, January.
    3. Adelchi Azzalini, 2005. "The Skew‐normal Distribution and Related Multivariate Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 159-188, June.
    4. Fung, Thomas & Seneta, Eugene, 2010. "Tail dependence for two skew t distributions," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 784-791, May.
    5. Harry Joe & Haijun Li, 2011. "Tail Risk of Multivariate Regular Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 671-693, December.
    6. Padoan, Simone A., 2011. "Multivariate extreme models based on underlying skew-t and skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 977-991, May.
    7. Thomas Fung & Eugene Seneta, 2010. "Tail dependence and skew distributions," Quantitative Finance, Taylor & Francis Journals, vol. 11(3), pages 327-333.
    8. Li, Haijun & Hua, Lei, 2015. "Higher order tail densities of copulas and hidden regular variation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 143-155.
    9. Rafael Schmidt, 2002. "Tail dependence for elliptically contoured distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 55(2), pages 301-327, May.
    10. Marc Genton & Nicola Loperfido, 2005. "Generalized skew-elliptical distributions and their quadratic forms," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(2), pages 389-401, June.
    11. Joe, Harry & Seshadri, Vanamamalai & Arnold, Barry C., 2012. "Multivariate inverse Gaussian and skew-normal densities," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2244-2251.
    12. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    13. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    14. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takaaki Koike & Marius Hofert, 2020. "Modality for Scenario Analysis and Maximum Likelihood Allocation," Papers 2005.02950, arXiv.org, revised Nov 2020.
    2. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Xin Lao & Zuoxiang Peng & Saralees Nadarajah, 2023. "Tail Dependence Functions of Two Classes of Bivariate Skew Distributions," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
    4. Ahn, Dohyun & Kim, Kyoung-Kuk & Kwon, Eunji, 2023. "Multivariate stress scenario selection in interbank networks," Journal of Economic Dynamics and Control, Elsevier, vol. 154(C).
    5. Koike, Takaaki & Hofert, Marius, 2021. "Modality for scenario analysis and maximum likelihood allocation," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 24-43.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fung, Thomas & Seneta, Eugene, 2014. "Convergence rate to a lower tail dependence coefficient of a skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 62-72.
    2. Joe, Harry & Sang, Peijun, 2016. "Multivariate models for dependent clusters of variables with conditional independence given aggregation variables," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 114-132.
    3. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Haijun Li, 2018. "Operator Tail Dependence of Copulas," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 1013-1027, September.
    5. Das, Bikramjit & Fasen-Hartmann, Vicky, 2024. "On heavy-tailed risks under Gaussian copula: The effects of marginal transformation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    6. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2017. "Extended Generalized Skew-Elliptical Distributions and their Moments," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-100, February.
    7. Fung, Thomas & Seneta, Eugene, 2016. "Tail asymptotics for the bivariate skew normal," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 129-138.
    8. Abe, Toshihiro & Fujisawa, Hironori & Kawashima, Takayuki & Ley, Christophe, 2021. "EM algorithm using overparameterization for the multivariate skew-normal distribution," Econometrics and Statistics, Elsevier, vol. 19(C), pages 151-168.
    9. Li, Haijun & Hua, Lei, 2015. "Higher order tail densities of copulas and hidden regular variation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 143-155.
    10. Jorge M. Arevalillo & Hilario Navarro, 2019. "A stochastic ordering based on the canonical transformation of skew-normal vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 475-498, June.
    11. Ley, Christophe & Paindaveine, Davy, 2010. "On the singularity of multivariate skew-symmetric models," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1434-1444, July.
    12. Thomas Fung & Eugene Seneta, 2010. "Modelling and Estimation for Bivariate Financial Returns," International Statistical Review, International Statistical Institute, vol. 78(1), pages 117-133, April.
    13. Kahrari, F. & Rezaei, M. & Yousefzadeh, F. & Arellano-Valle, R.B., 2016. "On the multivariate skew-normal-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 80-88.
    14. Cornelis J. Potgieter & Marc G. Genton, 2013. "Characteristic Function-based Semiparametric Inference for Skew-symmetric Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 471-490, September.
    15. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.
    16. Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    17. Mondal, Sagnik & Genton, Marc G., 2024. "A multivariate skew-normal-Tukey-h distribution," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    18. Batiz-Zuk, Enrique & Christodoulakis, George & Poon, Ser-Huang, 2015. "Credit contagion in the presence of non-normal shocks," International Review of Financial Analysis, Elsevier, vol. 37(C), pages 129-139.
    19. Samuel Kotz & Donatella Vicari, 2005. "Survey of developments in the theory of continuous skewed distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 225-261.
    20. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:171:y:2019:i:c:p:421-435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.