IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v92y2005i1p213-227.html
   My bibliography  Save this article

Exploiting occurrence times in likelihood inference for componentwise maxima

Author

Listed:
  • Alec Stephenson
  • Jonathan Tawn

Abstract

Multivariate extreme value distributions arise as the limiting distributions of normalised componentwise maxima. They are often used to model multivariate data that can be regarded as the componentwise maxima of some unobserved underlying multivariate process. In many applications we have extra information. We often know the locations of the maxima within the underlying process. If the process is temporal this knowledge is frequently available through the dates on which the maxima are recorded. We show how to incorporate this extra information into maximum likelihood procedures. Asymptotic and small-sample efficiency results are presented for the dependence parameter in the logistic parametric sub-class of bivariate extreme value distributions. We conclude with an application to sea levels. Copyright 2005, Oxford University Press.

Suggested Citation

  • Alec Stephenson & Jonathan Tawn, 2005. "Exploiting occurrence times in likelihood inference for componentwise maxima," Biometrika, Biometrika Trust, vol. 92(1), pages 213-227, March.
  • Handle: RePEc:oup:biomet:v:92:y:2005:i:1:p:213-227
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/92.1.213
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    2. Alexis Bienvenüe & Christian Y. Robert, 2017. "Likelihood Inference for Multivariate Extreme Value Distributions Whose Spectral Vectors have known Conditional Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 130-149, March.
    3. Raphaël Huser & Thomas Opitz & Emeric Thibaud, 2021. "Max‐infinitely divisible models and inference for spatial extremes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 321-348, March.
    4. Stoev, Stilian & Wang, Yizao, 2019. "Exchangeable random partitions from max-infinitely-divisible distributions," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 50-56.
    5. Vettori, Sabrina & Huser, Raphael & Segers, Johan & Genton, Marc, 2017. "Bayesian Clustering and Dimension Reduction in Multivariate Extremes," LIDAM Discussion Papers ISBA 2017017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Carsten Bormann & Melanie Schienle, 2020. "Detecting Structural Differences in Tail Dependence of Financial Time Series," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 380-392, April.
    7. Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
    8. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:92:y:2005:i:1:p:213-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.