IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v102y2015i4p855-870..html
   My bibliography  Save this article

Efficient inference and simulation for elliptical Pareto processes

Author

Listed:
  • Emeric Thibaud
  • Thomas Opitz

Abstract

Recent advances in extreme value theory have established $\ell $-Pareto processes as the natural limits for extreme events defined in terms of exceedances of a risk functional. In this paper we provide methods for the practical modelling of data based on a tractable yet flexible dependence model. We introduce the class of elliptical $\ell $-Pareto processes, which arise as the limits of threshold exceedances of certain elliptical processes characterized by a correlation function and a shape parameter. An efficient inference method based on maximizing a full likelihood with partial censoring is developed. Novel procedures for exact conditional and unconditional simulation are proposed. These ideas are illustrated using precipitation extremes in Switzerland.

Suggested Citation

  • Emeric Thibaud & Thomas Opitz, 2015. "Efficient inference and simulation for elliptical Pareto processes," Biometrika, Biometrika Trust, vol. 102(4), pages 855-870.
  • Handle: RePEc:oup:biomet:v:102:y:2015:i:4:p:855-870.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asv045
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    2. Federica Stolf & Antonio Canale, 2023. "A hierarchical Bayesian non‐asymptotic extreme value model for spatial data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    3. Raphaël Huser & Thomas Opitz & Emeric Thibaud, 2021. "Max‐infinitely divisible models and inference for spatial extremes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 321-348, March.
    4. Robert, Christian Y., 2022. "Testing for changes in the tail behavior of Brown–Resnick Pareto processes," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 312-368.
    5. Samuel A. Morris & Brian J. Reich & Emeric Thibaud, 2019. "Exploration and Inference in Spatial Extremes Using Empirical Basis Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 555-572, December.
    6. Raphaël de Fondeville & Anthony C. Davison, 2022. "Functional peaks‐over‐threshold analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1392-1422, September.
    7. Samuel A. Morris & Brian J. Reich & Emeric Thibaud & Daniel Cooley, 2017. "A space-time skew-t model for threshold exceedances," Biometrics, The International Biometric Society, vol. 73(3), pages 749-758, September.
    8. Daniela Castro-Camilo & Raphaël Huser & Håvard Rue, 2019. "A Spliced Gamma-Generalized Pareto Model for Short-Term Extreme Wind Speed Probabilistic Forecasting," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 517-534, September.
    9. Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
    10. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
    11. Jennifer L. Wadsworth, 2015. "On the occurrence times of componentwise maxima and bias in likelihood inference for multivariate max-stable distributions," Biometrika, Biometrika Trust, vol. 102(3), pages 705-711.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:102:y:2015:i:4:p:855-870.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.