IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i531p1037-1054.html
   My bibliography  Save this article

Local Likelihood Estimation of Complex Tail Dependence Structures, Applied to U.S. Precipitation Extremes

Author

Listed:
  • Daniela Castro-Camilo
  • Raphaël Huser

Abstract

To disentangle the complex nonstationary dependence structure of precipitation extremes over the entire contiguous United States (U.S.), we propose a flexible local approach based on factor copula models. Our subasymptotic spatial modeling framework yields nontrivial tail dependence structures, with a weakening dependence strength as events become more extreme; a feature commonly observed with precipitation data but not accounted for in classical asymptotic extreme-value models. To estimate the local extremal behavior, we fit the proposed model in small regional neighborhoods to high threshold exceedances, under the assumption of local stationarity, which allows us to gain in flexibility. By adopting a local censored likelihood approach, we make inference on a fine spatial grid, and we perform local estimation by taking advantage of distributed computing resources and the embarrassingly parallel nature of this estimation procedure. The local model is efficiently fitted at all grid points, and uncertainty is measured using a block bootstrap procedure. We carry out an extensive simulation study to show that our approach can adequately capture complex, nonstationary dependencies, in addition, our study of U.S. winter precipitation data reveals interesting differences in local tail structures over space, which has important implications on regional risk assessment of extreme precipitation events. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Suggested Citation

  • Daniela Castro-Camilo & Raphaël Huser, 2020. "Local Likelihood Estimation of Complex Tail Dependence Structures, Applied to U.S. Precipitation Extremes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1037-1054, July.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1037-1054
    DOI: 10.1080/01621459.2019.1647842
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1647842
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1647842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rishikesh Yadav & Raphaël Huser & Thomas Opitz, 2021. "Spatial hierarchical modeling of threshold exceedances using rate mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    2. Raphaël Huser & Thomas Opitz & Emeric Thibaud, 2021. "Max‐infinitely divisible models and inference for spatial extremes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 321-348, March.
    3. Indranil Sahoo & Joseph Guinness & Brian J. Reich, 2023. "Estimating atmospheric motion winds from satellite image data using space‐time drift models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.
    4. Silius M. Vandeskog & Sara Martino & Daniela Castro-Camilo & Håvard Rue, 2022. "Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 598-621, December.
    5. Matthieu Garcin & Maxime L. D. Nicolas, 2024. "Nonparametric estimator of the tail dependence coefficient: balancing bias and variance," Statistical Papers, Springer, vol. 65(8), pages 4875-4913, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1037-1054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.