IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v105i492y2010p1531-1540.html
   My bibliography  Save this article

Composite Likelihood Bayesian Information Criteria for Model Selection in High-Dimensional Data

Author

Listed:
  • Gao, Xin
  • Song, Peter X.-K.

Abstract

No abstract is available for this item.

Suggested Citation

  • Gao, Xin & Song, Peter X.-K., 2010. "Composite Likelihood Bayesian Information Criteria for Model Selection in High-Dimensional Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1531-1540.
  • Handle: RePEc:bes:jnlasa:v:105:i:492:y:2010:p:1531-1540
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/jasa.2010.tm09414
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monia Ranalli & Roberto Rocci, 2024. "Composite likelihood methods for parsimonious model-based clustering of mixed-type data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 381-407, June.
    2. E. Castilla & N. Martín & L. Pardo & K. Zografos, 2021. "Composite likelihood methods: Rao-type tests based on composite minimum density power divergence estimator," Statistical Papers, Springer, vol. 62(2), pages 1003-1041, April.
    3. Marbac, Matthieu & Sedki, Mohammed, 2017. "A family of block-wise one-factor distributions for modeling high-dimensional binary data," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 130-145.
    4. Hao Bai & Yuan Zhong & Xin Gao & Wei Xu, 2020. "Multivariate Mixed Response Model with Pairwise Composite-Likelihood Method," Stats, MDPI, vol. 3(3), pages 1-18, July.
    5. Krupskii, Pavel & Joe, Harry & Lee, David & Genton, Marc G., 2018. "Extreme-value limit of the convolution of exponential and multivariate normal distributions: Link to the Hüsler–Reiß distribution," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 80-95.
    6. Moreno Bevilacqua & Christian Caamaño‐Carrillo & Reinaldo B. Arellano‐Valle & Víctor Morales‐Oñate, 2021. "Non‐Gaussian geostatistical modeling using (skew) t processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 212-245, March.
    7. Monia Ranalli & Roberto Rocci, 2017. "A Model-Based Approach to Simultaneous Clustering and Dimensional Reduction of Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1007-1034, December.
    8. Li, Haocheng & Shu, Di & He, Wenqing & Yi, Grace Y., 2019. "Variable selection via the composite likelihood method for multilevel longitudinal data with missing responses and covariates," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 25-34.
    9. Eduardo F. Mendes & Gabriel J. P. Pinto, 2023. "Generalized Information Criteria for Structured Sparse Models," Papers 2309.01764, arXiv.org.
    10. Huang, Zhendong & Ferrari, Davide & Qian, Guoqi, 2017. "Parsimonious and powerful composite likelihood testing for group difference and genotype–phenotype association," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 37-49.
    11. Kenne Pagui, E.C. & Salvan, A. & Sartori, N., 2015. "On full efficiency of the maximum composite likelihood estimator," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 120-124.
    12. Papageorgiou, Ioulia & Moustaki, Irini, 2019. "Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables," LSE Research Online Documents on Economics 87592, London School of Economics and Political Science, LSE Library.
    13. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    14. Hang Lai & Xin Gao, 2023. "Modified BIC Criterion for Model Selection in Linear Mixed Models," Mathematics, MDPI, vol. 11(9), pages 1-26, May.
    15. Lu Tang & Ling Zhou & Peter X. K. Song, 2019. "Fusion learning algorithm to combine partially heterogeneous Cox models," Computational Statistics, Springer, vol. 34(1), pages 395-414, March.
    16. Tamar Sofer & Elizabeth D. Schifano & David C. Christiani & Xihong Lin, 2017. "Weighted pseudolikelihood for SNP set analysis with multiple secondary outcomes in case‐control genetic association studies," Biometrics, The International Biometric Society, vol. 73(4), pages 1210-1220, December.
    17. Shahrestani, Parnia & Rafei, Meysam, 2020. "The impact of oil price shocks on Tehran Stock Exchange returns: Application of the Markov switching vector autoregressive models," Resources Policy, Elsevier, vol. 65(C).
    18. Ranalli, Monia & Rocci, Roberto, 2017. "Mixture models for mixed-type data through a composite likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 87-102.
    19. Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2016. "Causal Latent Markov Model for the Comparison of Multiple Treatments in Observational Longitudinal Studies," Journal of Educational and Behavioral Statistics, , vol. 41(2), pages 146-179, April.
    20. Bartolucci, Francesco & Marino, Maria Francesca & Pandolfi, Silvia, 2015. "Composite likelihood inference for hidden Markov models for dynamic networks," MPRA Paper 67242, University Library of Munich, Germany.
    21. Battauz, Michela & Vidoni, Paolo, 2022. "A likelihood-based boosting algorithm for factor analysis models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    22. Myrsini Katsikatsou & Irini Moustaki, 2016. "Pairwise Likelihood Ratio Tests and Model Selection Criteria for Structural Equation Models with Ordinal Variables," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1046-1068, December.
    23. Bennedsen, Mikkel & Lunde, Asger & Shephard, Neil & Veraart, Almut E.D., 2023. "Inference and forecasting for continuous-time integer-valued trawl processes," Journal of Econometrics, Elsevier, vol. 236(2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:105:i:492:y:2010:p:1531-1540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.