IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2017-10.html
   My bibliography  Save this paper

Consistent Pseudo-Maximum Likelihood Estimators

Author

Listed:
  • Christian Gouriéroux

    (CREST; University of Toronto)

  • Alain Monfort

    (CREST)

  • Eric Renault

    (Brown university)

Abstract

The development of the literature on the pseudo maximum likelihood (PML) estimators would not have been so efficient without the modern proof of consistency of extremum estimators introduced at the end of the sixties by E. Malinvaud and R. Jennrich. We discuss this proof and replace it in an historical perspective. In this paper we also provide a survey of the literature on consistent (PML) estimators. We emphasize the role of the white noise assumptions on the set of pseudo distributions leading to consistent estimators. The stronger these assumptions, the larger the set of consistent PML estimators. We also illustrate the importance of these PML approaches in big data environment.

Suggested Citation

  • Christian Gouriéroux & Alain Monfort & Eric Renault, 2017. "Consistent Pseudo-Maximum Likelihood Estimators," Working Papers 2017-10, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2017-10
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2017-10.pdf
    File Function: CREST working paper version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gouriéroux, Christian & Monfort, Alain & Renne, Jean-Paul, 2017. "Statistical inference for independent component analysis: Application to structural VAR models," Journal of Econometrics, Elsevier, vol. 196(1), pages 111-126.
    2. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models," Econometrica, Econometric Society, vol. 52(3), pages 701-720, May.
    3. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    4. Gourieroux, C. & Monfort, A., 2018. "Composite indirect inference with application to corporate risks," Econometrics and Statistics, Elsevier, vol. 7(C), pages 30-45.
    5. N/A, 1990. "Statistical Appendix," National Institute Economic Review, National Institute of Economic and Social Research, vol. 132(1), pages 93-102, May.
    6. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
    7. N/A, 1990. "Statistical Appendix," National Institute Economic Review, National Institute of Economic and Social Research, vol. 131(1), pages 91-100, February.
    8. Hsiao, Cheng & Kim, Changseob & Taylor, Grant, 1990. "A statistical perspective on insurance rate-making," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 5-24.
    9. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    10. Crouhy, Michel & Galai, Dan & Mark, Robert, 2000. "A comparative analysis of current credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 59-117, January.
    11. Michael L. Stein & Zhiyi Chi & Leah J. Welty, 2004. "Approximating likelihoods for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 275-296, May.
    12. Yining Chen, 2015. "Semiparametric Time Series Models with Log-concave Innovations: Maximum Likelihood Estimation and its Consistency," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 1-31, March.
    13. Francq, Christian & Lepage, Guillaume & Zakoïan, Jean-Michel, 2011. "Two-stage non Gaussian QML estimation of GARCH models and testing the efficiency of the Gaussian QMLE," Journal of Econometrics, Elsevier, vol. 165(2), pages 246-257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gouriéroux, Christian & Monfort, Alain & Zakoian, Jean-Michel, 2017. "Pseudo-Maximum Likelihood and Lie Groups of Linear Transformations," MPRA Paper 79623, University Library of Munich, Germany.
    2. Moreno Bevilacqua & Christian Caamaño‐Carrillo & Reinaldo B. Arellano‐Valle & Víctor Morales‐Oñate, 2021. "Non‐Gaussian geostatistical modeling using (skew) t processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 212-245, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Gouriéroux & A. Monfort & J.‐M. Zakoïan, 2019. "Consistent Pseudo‐Maximum Likelihood Estimators and Groups of Transformations," Econometrica, Econometric Society, vol. 87(1), pages 327-345, January.
    2. Gabriele Fiorentini & Enrique Sentana, 2021. "Specification tests for non‐Gaussian maximum likelihood estimators," Quantitative Economics, Econometric Society, vol. 12(3), pages 683-742, July.
    3. Gouriéroux, Christian & Monfort, Alain & Zakoian, Jean-Michel, 2017. "Pseudo-Maximum Likelihood and Lie Groups of Linear Transformations," MPRA Paper 79623, University Library of Munich, Germany.
    4. Herwartz, Helmut, 2017. "Stock return prediction under GARCH — An empirical assessment," International Journal of Forecasting, Elsevier, vol. 33(3), pages 569-580.
    5. Hallin, Marc & La Vecchia, Davide, 2017. "R-estimation in semiparametric dynamic location-scale models," Journal of Econometrics, Elsevier, vol. 196(2), pages 233-247.
    6. Hallin, Marc & La Vecchia, Davide, 2020. "A Simple R-estimation method for semiparametric duration models," Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
    7. Conrad, Christian & Mammen, Enno, 2016. "Asymptotics for parametric GARCH-in-Mean models," Journal of Econometrics, Elsevier, vol. 194(2), pages 319-329.
    8. Mohamed El Ghourabi & Christian Francq & Fedya Telmoudi, 2016. "Consistent Estimation of the Value at Risk When the Error Distribution of the Volatility Model is Misspecified," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 46-76, January.
    9. Isaiah Hull & Or Sattath & Eleni Diamanti & Göran Wendin, 2024. "Quantum Technology for Economists," Contributions to Economics, Springer, number 978-3-031-50780-9.
    10. Yining Chen, 2015. "Semiparametric Time Series Models with Log-concave Innovations: Maximum Likelihood Estimation and its Consistency," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 1-31, March.
    11. Holger Dette & Juan Carlos Pardo‐Fernández & Ingrid Van Keilegom, 2009. "Goodness‐of‐Fit Tests for Multiplicative Models with Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 782-799, December.
    12. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    13. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    14. Quoreshi, Shahiduzzaman, 2005. "Modelling High Frequency Financial Count Data," Umeå Economic Studies 656, Umeå University, Department of Economics.
    15. Moonis Shakeel & Bhavana Srivastava, 2021. "Stylized Facts of High-frequency Financial Time Series Data," Global Business Review, International Management Institute, vol. 22(2), pages 550-564, April.
    16. Meister, Alexander & Kreiß, Jens-Peter, 2016. "Statistical inference for nonparametric GARCH models," Stochastic Processes and their Applications, Elsevier, vol. 126(10), pages 3009-3040.
    17. Francq, Christian & Zakoïan, Jean-Michel, 2015. "Risk-parameter estimation in volatility models," Journal of Econometrics, Elsevier, vol. 184(1), pages 158-173.
    18. Aknouche, Abdelhakim & Al-Eid, Eid & Demouche, Nacer, 2016. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," MPRA Paper 75770, University Library of Munich, Germany, revised 19 Dec 2016.
    19. DOLADO , Juan J. & RODRIGUEZ-POO, Juan & VEREDAS, David, 2004. "Testing weak exogeneity in the exponential family : an application to financial point processes," LIDAM Discussion Papers CORE 2004049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Aknouche, Abdelhakim & Scotto, Manuel, 2022. "A multiplicative thinning-based integer-valued GARCH model," MPRA Paper 112475, University Library of Munich, Germany.

    More about this item

    Keywords

    Pseudo-Likelihood; Composite Pseudo-Likelihood; Consistency; Big Data; ARCH Model; Normalized Data; Lie Group;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2017-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.