IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v114y2013icp16-28.html
   My bibliography  Save this article

Non-Gaussian modeling of spatial data using scale mixing of a unified skew Gaussian process

Author

Listed:
  • Zareifard, Hamid
  • Jafari Khaledi, Majid

Abstract

In this paper, we introduce a unified skew Gaussian-log Gaussian model and propose a general class of spatial sampling models that can account for both heavy tails and skewness. This class includes some models proposed previously in the literature. The likelihood function involves analytically intractable integrals and direct maximization of the marginal likelihood is numerically difficult. We obtain maximum likelihood estimates of the model parameters, using a stochastic approximation of the EM algorithm (SAEM). The predictive distribution at unsampled sites is approximated based on Markov chain Monte Carlo samples. The identifiability of the parameters and the performance of the proposed model is investigated by a simulation study. The usefulness of our methodology is demonstrated by analyzing a Pb data set in a region of north Iran.

Suggested Citation

  • Zareifard, Hamid & Jafari Khaledi, Majid, 2013. "Non-Gaussian modeling of spatial data using scale mixing of a unified skew Gaussian process," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 16-28.
  • Handle: RePEc:eee:jmvana:v:114:y:2013:i:c:p:16-28
    DOI: 10.1016/j.jmva.2012.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12001716
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thaís C. O. Fonseca & Mark F. J. Steel, 2011. "Non-Gaussian spatiotemporal modelling through scale mixing," Biometrika, Biometrika Trust, vol. 98(4), pages 761-774.
    2. Adelchi Azzalini, 2005. "The Skew‐normal Distribution and Related Multivariate Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 159-188, June.
    3. Palacios, M. Blanca & Steel, Mark F.J., 2006. "Non-Gaussian Bayesian Geostatistical Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 604-618, June.
    4. Cancho, Vicente G. & Dey, Dipak K. & Lachos, Victor H. & Andrade, Marinho G., 2011. "Bayesian nonlinear regression models with scale mixtures of skew-normal distributions: Estimation and case influence diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 588-602, January.
    5. Reinaldo B. Arellano‐Valle & Adelchi Azzalini, 2006. "On the Unification of Families of Skew‐normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 561-574, September.
    6. Kim, Hyoung-Moon & Genton, Marc G., 2011. "Characteristic functions of scale mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1105-1117, August.
    7. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    8. Lachos, Victor H. & Bandyopadhyay, Dipankar & Garay, Aldo M., 2011. "Heteroscedastic nonlinear regression models based on scale mixtures of skew-normal distributions," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1208-1217, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Firoozeh Rivaz & Majid Jafari Khaledi, 2015. "Bayesian spatial prediction of skew and censored data via a hybrid algorithm," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(9), pages 1993-2009, September.
    3. M. Alodat & M. AL-Rawwash, 2014. "The extended skew Gaussian process for regression," METRON, Springer;Sapienza Università di Roma, vol. 72(3), pages 317-330, October.
    4. Moreno Bevilacqua & Christian Caamaño‐Carrillo & Reinaldo B. Arellano‐Valle & Víctor Morales‐Oñate, 2021. "Non‐Gaussian geostatistical modeling using (skew) t processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 212-245, March.
    5. Krzysztof Dȩbicki & Enkelejd Hashorva & Lanpeng Ji & Chengxiu Ling, 2015. "Extremes of order statistics of stationary processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 229-248, June.
    6. Masoud Faridi & Majid Jafari Khaledi, 2022. "The polar-generalized normal distribution: properties, Bayesian estimation and applications," Statistical Papers, Springer, vol. 63(2), pages 571-603, April.
    7. Jafari Khaledi, Majid & Zareifard, Hamid & Boojari, Hossein, 2023. "A spatial skew-Gaussian process with a specified covariance function," Statistics & Probability Letters, Elsevier, vol. 192(C).
    8. Kassahun Abere Ayalew & Samuel Manda & Bo Cai, 2021. "A Comparison of Bayesian Spatial Models for HIV Mapping in South Africa," IJERPH, MDPI, vol. 18(21), pages 1-10, October.
    9. Mahmoudian, Behzad, 2018. "On the existence of some skew-Gaussian random field models," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 331-335.
    10. Hossein Boojari & Majid Khaledi & Firoozeh Rivaz, 2016. "A non-homogeneous skew-Gaussian Bayesian spatial model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 55-73, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phil D. Young & Joshua D. Patrick & John A. Ramey & Dean M. Young, 2020. "An Alternative Matrix Skew-Normal Random Matrix and Some Properties," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 28-49, February.
    2. Jamalizadeh, A. & Balakrishnan, N., 2010. "Distributions of order statistics and linear combinations of order statistics from an elliptical distribution as mixtures of unified skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1412-1427, July.
    3. Young, Phil D. & Harvill, Jane L. & Young, Dean M., 2016. "A derivation of the multivariate singular skew-normal density function," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 40-45.
    4. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    5. Angela Montanari & Cinzia Viroli, 2010. "A skew-normal factor model for the analysis of student satisfaction towards university courses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(3), pages 473-487.
    6. Kahrari, F. & Rezaei, M. & Yousefzadeh, F. & Arellano-Valle, R.B., 2016. "On the multivariate skew-normal-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 80-88.
    7. Jafari Khaledi, Majid & Zareifard, Hamid & Boojari, Hossein, 2023. "A spatial skew-Gaussian process with a specified covariance function," Statistics & Probability Letters, Elsevier, vol. 192(C).
    8. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Cornelis J. Potgieter & Marc G. Genton, 2013. "Characteristic Function-based Semiparametric Inference for Skew-symmetric Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 471-490, September.
    10. Cabral, Celso Rômulo Barbosa & Lachos, Víctor Hugo & Zeller, Camila Borelli, 2014. "Multivariate measurement error models using finite mixtures of skew-Student t distributions," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 179-198.
    11. Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.
    12. Marco Minozzo, 2011. "On the existence of some skew normal stationary processes," Working Papers 20/2011, University of Verona, Department of Economics.
    13. Young, Phil D. & Kahle, David J. & Young, Dean M., 2017. "On the independence of singular multivariate skew-normal sub-vectors," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 58-62.
    14. Bhat, Chandra R. & Astroza, Sebastian & Hamdi, Amin S., 2017. "A spatial generalized ordered-response model with skew normal kernel error terms with an application to bicycling frequency," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 126-148.
    15. Jose, K.K. & Naik, Shanoja R., 2008. "A class of asymmetric pathway distributions and an entropy interpretation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(28), pages 6943-6951.
    16. Yulia V. Marchenko & Marc G. Genton, 2012. "A Heckman Selection- t Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 304-317, March.
    17. Adcock, C.J., 2014. "Mean–variance–skewness efficient surfaces, Stein’s lemma and the multivariate extended skew-Student distribution," European Journal of Operational Research, Elsevier, vol. 234(2), pages 392-401.
    18. David Mayston, 2015. "Analysing the effectiveness of public service producers with endogenous resourcing," Journal of Productivity Analysis, Springer, vol. 44(1), pages 115-126, August.
    19. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    20. Douadia Bougherara & Laurent Piet, 2018. "On the role of probability weighting on WTP for crop insurance with and without yield skewness," Working Papers hal-02790605, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:114:y:2013:i:c:p:16-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.