IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v33y2006i3p523-540.html
   My bibliography  Save this article

On Optimal Point and Block Prediction in Log‐Gaussian Random Fields

Author

Listed:
  • VICTOR DE OLIVEIRA

Abstract

. This work discusses the problems of point and block prediction in log‐Gaussian random fields with unknown mean. New point and block predictors are derived that are optimal in mean squared error sense within certain families of predictors that contain the corresponding lognormal kriging point and block predictors, as well as a block predictor originally motivated under the assumption of ‘preservation of lognormality’, and hence improve upon them. A comparison between the optimal, lognormal kriging and best linear unbiased predictors is provided, as well as between the two new block predictors. Somewhat surprisingly, it is shown that the corresponding optimal and lognormal kriging predictors are almost identical under most scenarios. It is also shown that one of the new block predictors is uniformly better than the other.

Suggested Citation

  • Victor De Oliveira, 2006. "On Optimal Point and Block Prediction in Log‐Gaussian Random Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 523-540, September.
  • Handle: RePEc:bla:scjsta:v:33:y:2006:i:3:p:523-540
    DOI: 10.1111/j.1467-9469.2006.00494.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2006.00494.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2006.00494.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moreno Bevilacqua & Christian Caamaño‐Carrillo & Carlo Gaetan, 2020. "On modeling positive continuous data with spatiotemporal dependence," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    2. Toshihiro Hirano & Yoshihiro Yajima, 2013. "Covariance tapering for prediction of large spatial data sets in transformed random fields," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 913-939, October.
    3. De Oliveira, Victor & Rui, Changxiang, 2009. "On shortest prediction intervals in log-Gaussian random fields," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4345-4357, October.
    4. Ganggang Xu & Marc G. Genton, 2017. "Tukey -and- Random Fields," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1236-1249, July.
    5. De Oliveira, Victor & Kone, Bazoumana, 2015. "Prediction intervals for integrals of Gaussian random fields," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 37-51.
    6. Moreno Bevilacqua & Christian Caamaño‐Carrillo & Reinaldo B. Arellano‐Valle & Víctor Morales‐Oñate, 2021. "Non‐Gaussian geostatistical modeling using (skew) t processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 212-245, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:33:y:2006:i:3:p:523-540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.