IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v31y2020i7ne2632.html
   My bibliography  Save this article

On modeling positive continuous data with spatiotemporal dependence

Author

Listed:
  • Moreno Bevilacqua
  • Christian Caamaño‐Carrillo
  • Carlo Gaetan

Abstract

In this article, we concentrate on an alternative modeling strategy for positive data that exhibit spatial or spatiotemporal dependence. Specifically, we propose to consider stochastic processes obtained through a monotone transformation of scaled version of χ2 random processes. The latter is well known in the specialized literature and originates by summing independent copies of a squared Gaussian process. However, their use as stochastic models and related inference has not been much considered. Motivated by a spatiotemporal analysis of wind speed data from a network of meteorological stations in the Netherlands, we exemplify our modeling strategy by means of a nonstationary process with Weibull marginal distributions. For the proposed Weibull process we study the second‐order and geometrical properties and we provide analytic expressions for the bivariate distribution. Since the likelihood is intractable, even for a relatively small data set, we suggest adopting the pairwise likelihood as a tool for inference. Moreover, we tackle the prediction problem and we propose to use a linear prediction. The effectiveness of our modeling strategy is illustrated by analyzing the aforementioned Netherland wind speed data that we integrate with a simulation study. The proposed method is implemented in the R package GeoModels.

Suggested Citation

  • Moreno Bevilacqua & Christian Caamaño‐Carrillo & Carlo Gaetan, 2020. "On modeling positive continuous data with spatiotemporal dependence," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
  • Handle: RePEc:wly:envmet:v:31:y:2020:i:7:n:e2632
    DOI: 10.1002/env.2632
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2632
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cristiano Varin & Paolo Vidoni, 2005. "A note on composite likelihood inference and model selection," Biometrika, Biometrika Trust, vol. 92(3), pages 519-528, September.
    2. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    3. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    4. Jennifer L. Wadsworth & Jonathan A. Tawn, 2012. "Dependence modelling for spatial extremes," Biometrika, Biometrika Trust, vol. 99(2), pages 253-272.
    5. David J. Allcroft & Chris A. Glasbey, 2003. "A latent Gaussian Markov random‐field model for spatiotemporal rainfall disaggregation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 487-498, October.
    6. Moreno Bevilacqua & Carlo Gaetan & Jorge Mateu & Emilio Porcu, 2012. "Estimating Space and Space-Time Covariance Functions for Large Data Sets: A Weighted Composite Likelihood Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 268-280, March.
    7. Yanlin Tang & Huixia J. Wang & Ying Sun & Amanda S. Hering, 2019. "Copula‐based semiparametric models for spatiotemporal data," Biometrics, The International Biometric Society, vol. 75(4), pages 1156-1167, December.
    8. Pryor, S.C. & Barthelmie, R.J., 2010. "Climate change impacts on wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 430-437, January.
    9. Emilio Porcu & Moreno Bevilacqua & Marc G. Genton, 2016. "Spatio-Temporal Covariance and Cross-Covariance Functions of the Great Circle Distance on a Sphere," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 888-898, April.
    10. Victor De Oliveira, 2006. "On Optimal Point and Block Prediction in Log‐Gaussian Random Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 523-540, September.
    11. Ganggang Xu & Marc G. Genton, 2017. "Tukey -and- Random Fields," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1236-1249, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Caamaño-Carrillo & Javier E. Contreras-Reyes, 2022. "A Generalization of the Bivariate Gamma Distribution Based on Generalized Hypergeometric Functions," Mathematics, MDPI, vol. 10(9), pages 1-17, May.
    2. Moreno Bevilacqua & Christian Caamaño-Carrillo & Reinaldo B. Arellano-Valle & Camilo Gómez, 2022. "A class of random fields with two-piece marginal distributions for modeling point-referenced data with spatial outliers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 644-674, September.
    3. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    4. Sandra De Iaco, 2023. "Families of complex‐valued covariance models through integration," Environmetrics, John Wiley & Sons, Ltd., vol. 34(3), May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moreno Bevilacqua & Christian Caamaño‐Carrillo & Reinaldo B. Arellano‐Valle & Víctor Morales‐Oñate, 2021. "Non‐Gaussian geostatistical modeling using (skew) t processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 212-245, March.
    2. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    3. Moreno Bevilacqua & Christian Caamaño-Carrillo & Reinaldo B. Arellano-Valle & Camilo Gómez, 2022. "A class of random fields with two-piece marginal distributions for modeling point-referenced data with spatial outliers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 644-674, September.
    4. Krupskii, Pavel & Huser, Raphaël, 2024. "Max-convolution processes with random shape indicator kernels," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    5. Quan Vu & Yi Cao & Josh Jacobson & Alan R. Pearse & Andrew Zammit-Mangion, 2021. "Discussion on “Competition on Spatial Statistics for Large Datasets”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 614-618, December.
    6. Morales-Oñate, Víctor & Crudu, Federico & Bevilacqua, Moreno, 2021. "Blockwise Euclidean likelihood for spatio-temporal covariance models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 176-201.
    7. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    8. Acosta, Jonathan & Alegría, Alfredo & Osorio, Felipe & Vallejos, Ronny, 2021. "Assessing the effective sample size for large spatial datasets: A block likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    9. Padoan, Simone A., 2013. "Extreme dependence models based on event magnitude," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 1-19.
    10. Huang Huang & Sameh Abdulah & Ying Sun & Hatem Ltaief & David E. Keyes & Marc G. Genton, 2021. "Competition on Spatial Statistics for Large Datasets," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 580-595, December.
    11. Thordis L. Thorarinsdottir & Tilmann Gneiting, 2010. "Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 371-388, April.
    12. Samuel A. Morris & Brian J. Reich & Emeric Thibaud & Daniel Cooley, 2017. "A space-time skew-t model for threshold exceedances," Biometrics, The International Biometric Society, vol. 73(3), pages 749-758, September.
    13. Heaton, Matthew J. & Dahl, Benjamin K. & Dayley, Caleb & Warr, Richard L. & White, Philip, 2024. "Integrating machine learning and Bayesian nonparametrics for flexible modeling of point pattern data," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    14. Lu Zhang & Sudipto Banerjee & Andrew O. Finley, 2021. "High‐dimensional multivariate geostatistics: A Bayesian matrix‐normal approach," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    15. Emilio Porcu & Philip A. White, 2022. "Random fields on the hypertorus: Covariance modeling and applications," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
    16. Oh, Dong Hwan & Patton, Andrew J., 2016. "High-dimensional copula-based distributions with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 349-366.
    17. Isabelle Grenier & Bruno Sansó & Jessica L. Matthews, 2024. "Multivariate nearest‐neighbors Gaussian processes with random covariance matrices," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    18. Paige, John & Fuglstad, Geir-Arne & Riebler, Andrea & Wakefield, Jon, 2022. "Bayesian multiresolution modeling of georeferenced data: An extension of ‘LatticeKrig’," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    19. Zifeng Zhao & Peng Shi & Xiaoping Feng, 2021. "Knowledge Learning of Insurance Risks Using Dependence Models," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1177-1196, July.
    20. Felipe Tagle & Marc G. Genton & Andrew Yip & Suleiman Mostamandi & Georgiy Stenchikov & Stefano Castruccio, 2020. "A high‐resolution bilevel skew‐t stochastic generator for assessing Saudi Arabia's wind energy resources," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:31:y:2020:i:7:n:e2632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.