IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i4p1325-1356.html
   My bibliography  Save this article

Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure

Author

Listed:
  • Lim, S.C.
  • Teo, L.P.

Abstract

Two types of Gaussian processes, namely the Gaussian field with generalized Cauchy covariance (GFGCC) and the Gaussian sheet with generalized Cauchy covariance (GSGCC) are considered. Some of the basic properties and the asymptotic properties of the spectral densities of these random fields are studied. The associated self-similar random fields obtained by applying the Lamperti transformation to GFGCC and GSGCC are studied.

Suggested Citation

  • Lim, S.C. & Teo, L.P., 2009. "Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1325-1356, April.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:4:p:1325-1356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00108-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anderson, Dale N., 1992. "A multivariate Linnik distribution," Statistics & Probability Letters, Elsevier, vol. 14(4), pages 333-336, July.
    2. Gabriel Lang & François Roueff, 2001. "Semi-parametric Estimation of the Hölder Exponent of a Stationary Gaussian Process with Minimax Rates," Statistical Inference for Stochastic Processes, Springer, vol. 4(3), pages 283-306, October.
    3. Michael L. Stein, 2005. "Space-Time Covariance Functions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 310-321, March.
    4. S. Davies & P. Hall, 1999. "Fractal analysis of surface roughness by using spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 3-37.
    5. Gneiting T., 2002. "Nonseparable, Stationary Covariance Functions for Space-Time Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 590-600, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ming, 2017. "Record length requirement of long-range dependent teletraffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 164-187.
    2. Moreno Bevilacqua & Christian Caamaño‐Carrillo & Reinaldo B. Arellano‐Valle & Víctor Morales‐Oñate, 2021. "Non‐Gaussian geostatistical modeling using (skew) t processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 212-245, March.
    3. Moreva, Olga & Schlather, Martin, 2023. "Bivariate covariance functions of Pólya type," Journal of Multivariate Analysis, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    2. Anup Suryawanshi & Debraj Ghosh, 2015. "Wind speed prediction using spatio-temporal covariance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1435-1449, January.
    3. José-María Montero & Gema Fernández-Avilés & Tiziana Laureti, 2021. "A Local Spatial STIRPAT Model for Outdoor NO x Concentrations in the Community of Madrid, Spain," Mathematics, MDPI, vol. 9(6), pages 1-33, March.
    4. Tingjin Chu & Jialuo Liu & Jun Zhu & Haonan Wang, 2022. "Spatio-Temporal Expanding Distance Asymptotic Framework for Locally Stationary Processes," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 689-713, August.
    5. S. De Iaco & M. Palma & D. Posa, 2013. "Prediction of particle pollution through spatio-temporal multivariate geostatistical analysis: spatial special issue," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 133-150, April.
    6. Moreno Bevilacqua & Christian Caamaño-Carrillo & Reinaldo B. Arellano-Valle & Camilo Gómez, 2022. "A class of random fields with two-piece marginal distributions for modeling point-referenced data with spatial outliers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 644-674, September.
    7. Wu, Dongsheng & Xiao, Yimin, 2009. "Continuity in the Hurst index of the local times of anisotropic Gaussian random fields," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1823-1844, June.
    8. Fernández-Avilés, G & Montero, JM & Mateu, J, 2011. "Mathematical Genesis of the Spatio-Temporal Covariance Functions," MPRA Paper 35874, University Library of Munich, Germany.
    9. De Iaco, S., 2023. "Spatio-temporal generalized complex covariance models based on convolution," Computational Statistics & Data Analysis, Elsevier, vol. 183(C).
    10. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, August.
    11. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    12. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    13. Sun, Ying & Chang, Xiaohui & Guan, Yongtao, 2018. "Flexible and efficient estimating equations for variogram estimation," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 45-58.
    14. Daniel Griffith, 2010. "Modeling spatio-temporal relationships: retrospect and prospect," Journal of Geographical Systems, Springer, vol. 12(2), pages 111-123, June.
    15. Hansjörg Albrecher & Martin Bladt & Mogens Bladt, 2021. "Multivariate matrix Mittag–Leffler distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(2), pages 369-394, April.
    16. Yury Khokhlov & Victor Korolev & Alexander Zeifman, 2020. "Multivariate Scale-Mixed Stable Distributions and Related Limit Theorems," Mathematics, MDPI, vol. 8(5), pages 1-29, May.
    17. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.
    18. Alessia Caponera, 2021. "SPHARMA approximations for stationary functional time series on the sphere," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 609-634, October.
    19. Robert, Christian Y., 2022. "Testing for changes in the tail behavior of Brown–Resnick Pareto processes," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 312-368.
    20. Gneiting, Tilmann, 2002. "Compactly Supported Correlation Functions," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 493-508, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:4:p:1325-1356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.