IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v84y2021i6d10.1007_s00184-020-00802-1.html
   My bibliography  Save this article

On moments of folded and truncated multivariate Student-t distributions based on recurrence relations

Author

Listed:
  • Christian E. Galarza

    (Escuela Superior Politécnica del Litoral, ESPOL)

  • Tsung-I Lin

    (National Chung Hsing University
    China Medical University)

  • Wan-Lun Wang

    (Feng Chia University)

  • Víctor H. Lachos

    (University of Connecticut)

Abstract

The use of the first two moments of the truncated multivariate Student-t distribution has attracted increasing attention from a wide range of applications. This paper develops recurrence relations for integrals that involve the density of multivariate Student-t distributions. The proposed techniques allow for fast computation of arbitrary-order product moments of folded and truncated multivariate Student-t distributions and offer explicit expressions of low-order moments of folded and truncated multivariate Student-t distributions. A real data example containing positive censored responses is applied to illustrate the effectiveness and importance of the proposed methods. An R MomTrunc package is developed and publicly available on the CRAN repository.

Suggested Citation

  • Christian E. Galarza & Tsung-I Lin & Wan-Lun Wang & Víctor H. Lachos, 2021. "On moments of folded and truncated multivariate Student-t distributions based on recurrence relations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(6), pages 825-850, August.
  • Handle: RePEc:spr:metrik:v:84:y:2021:i:6:d:10.1007_s00184-020-00802-1
    DOI: 10.1007/s00184-020-00802-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-020-00802-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-020-00802-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arellano-Valle, Reinaldo B. & Bolfarine, Heleno, 1995. "On some characterizations of the t-distribution," Statistics & Probability Letters, Elsevier, vol. 25(1), pages 79-85, October.
    2. Wang, Wan-Lun & Castro, Luis M. & Lin, Tsung-I, 2017. "Automated learning of t factor analysis models with complete and incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 157-171.
    3. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    4. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    5. Lien, Da-Hsiang Donald, 1985. "Moments of truncated bivariate log-normal distributions," Economics Letters, Elsevier, vol. 19(3), pages 243-247.
    6. Kim, Hyoung-Moon, 2008. "A note on scale mixtures of skew normal distribution," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1694-1701, September.
    7. Fernanda De Bastiani & Audrey Mariz de Aquino Cysneiros & Miguel Uribe-Opazo & Manuel Galea, 2015. "Influence diagnostics in elliptical spatial linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 322-340, June.
    8. Wang, Wan-Lun & Castro, Luis M. & Lachos, Victor H. & Lin, Tsung-I, 2019. "Model-based clustering of censored data via mixtures of factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 140(C), pages 104-121.
    9. Lin, Tsung I. & Ho, Hsiu J. & Chen, Chiang L., 2009. "Analysis of multivariate skew normal models with incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2337-2351, November.
    10. Roozegar, Roohollah & Balakrishnan, Narayanaswamy & Jamalizadeh, Ahad, 2020. "On moments of doubly truncated multivariate normal mean–variance mixture distributions with application to multivariate tail conditional expectation," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    11. Cedric Flecher & Denis Allard & Philippe Naveau, 2010. "Truncated skew-normal distributions: moments, estimation by weighted moments and application to climatic data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 331-345.
    12. Lachos, Víctor H. & Moreno, Edgar J. López & Chen, Kun & Cabral, Celso Rômulo Barbosa, 2017. "Finite mixture modeling of censored data using the multivariate Student-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 151-167.
    13. Thaís C. O. Fonseca & Marco A. R. Ferreira & Helio S. Migon, 2008. "Objective Bayesian analysis for the Student-t regression model," Biometrika, Biometrika Trust, vol. 95(2), pages 325-333.
    14. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Tsung-I & Wang, Wan-Lun, 2024. "On moments of truncated multivariate normal/independent distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    2. Tsung-I Lin & I-An Chen & Wan-Lun Wang, 2023. "A robust factor analysis model based on the canonical fundamental skew-t distribution," Statistical Papers, Springer, vol. 64(2), pages 367-393, April.
    3. Galarza, Christian E. & Matos, Larissa A. & Castro, Luis M. & Lachos, Victor H., 2022. "Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Valeriano, Katherine A.L. & Galarza, Christian E. & Matos, Larissa A. & Lachos, Victor H., 2023. "Likelihood-based inference for the multivariate skew-t regression with censored or missing responses," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    5. Baishuai Zuo & Chuancun Yin, 2022. "Multivariate doubly truncated moments for generalized skew-elliptical distributions with application to multivariate tail conditional risk measures," Papers 2203.00839, arXiv.org.
    6. Christian E. Galarza & Larissa A. Matos & Victor H. Lachos, 2022. "An EM algorithm for estimating the parameters of the multivariate skew-normal distribution with censored responses," METRON, Springer;Sapienza Università di Roma, vol. 80(2), pages 231-253, August.
    7. Wan-Lun Wang & Tsung-I Lin, 2022. "Robust clustering of multiply censored data via mixtures of t factor analyzers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 22-53, March.
    8. Chénangnon Frédéric Tovissodé & Aliou Diop & Romain Glèlè Kakaï, 2021. "Inference in skew generalized t-link models for clustered binary outcome via a parameter-expanded EM algorithm," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-31, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galarza, Christian E. & Matos, Larissa A. & Castro, Luis M. & Lachos, Victor H., 2022. "Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Antonio Parisi & B. Liseo, 2018. "Objective Bayesian analysis for the multivariate skew-t model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 277-295, June.
    4. Diks, Cees & Fang, Hao, 2020. "Comparing density forecasts in a risk management context," International Journal of Forecasting, Elsevier, vol. 36(2), pages 531-551.
    5. Jorge M. Arevalillo & Hilario Navarro, 2020. "Data projections by skewness maximization under scale mixtures of skew-normal vectors," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 435-461, June.
    6. Kim, Hyoung-Moon & Maadooliat, Mehdi & Arellano-Valle, Reinaldo B. & Genton, Marc G., 2016. "Skewed factor models using selection mechanisms," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 162-177.
    7. Moreno Bevilacqua & Christian Caamaño‐Carrillo & Reinaldo B. Arellano‐Valle & Víctor Morales‐Oñate, 2021. "Non‐Gaussian geostatistical modeling using (skew) t processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 212-245, March.
    8. Kim, Hyoung-Moon & Mallick, Bani K., 2003. "Moments of random vectors with skew t distribution and their quadratic forms," Statistics & Probability Letters, Elsevier, vol. 63(4), pages 417-423, July.
    9. C. A. Abanto-Valle & V. H. Lachos & Dipak K. Dey, 2015. "Bayesian Estimation of a Skew-Student-t Stochastic Volatility Model," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 721-738, September.
    10. Seokho Lee & Marc G. Genton & Reinaldo B. Arellano-Valle, 2010. "Perturbation of Numerical Confidential Data via Skew-t Distributions," Management Science, INFORMS, vol. 56(2), pages 318-333, February.
    11. Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.
    12. Kim, Hyoung-Moon, 2008. "A note on scale mixtures of skew normal distribution," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1694-1701, September.
    13. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2005. "On fundamental skew distributions," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 93-116, September.
    14. Wan-Lun Wang & Tsung-I Lin, 2022. "Robust clustering of multiply censored data via mixtures of t factor analyzers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 22-53, March.
    15. Francisco H. C. Alencar & Christian E. Galarza & Larissa A. Matos & Victor H. Lachos, 2022. "Finite mixture modeling of censored and missing data using the multivariate skew-normal distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 521-557, September.
    16. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    17. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    18. M. Teimourian & T. Baghfalaki & M. Ganjali & D. Berridge, 2015. "Joint modeling of mixed skewed continuous and ordinal longitudinal responses: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2233-2256, October.
    19. Azzalini, Adelchi & Browne, Ryan P. & Genton, Marc G. & McNicholas, Paul D., 2016. "On nomenclature for, and the relative merits of, two formulations of skew distributions," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 201-206.
    20. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:84:y:2021:i:6:d:10.1007_s00184-020-00802-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.