IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v71y2003i1p285-317.html
   My bibliography  Save this article

Inference in Arch and Garch Models with Heavy--Tailed Errors

Author

Listed:
  • Peter Hall

    (University of Chicago, IL, U.S.A)

  • Qiwei Yao

    (Yale University, New Haven, U.S.A.; University of Auckland, New Zealand; University of York, UK)

Abstract

ARCH and GARCH models directly address the dependency of conditional second moments, and have proved particularly valuable in modelling processes where a relatively large degree of fluctuation is present. These include financial time series, which can be particularly heavy tailed. However, little is known about properties of ARCH or GARCH models in the heavy--tailed setting, and no methods are available for approximating the distributions of parameter estimators there. In this paper we show that, for heavy--tailed errors, the asymptotic distributions of quasi--maximum likelihood parameter estimators in ARCH and GARCH models are nonnormal, and are particularly difficult to estimate directly using standard parametric methods. Standard bootstrap methods also fail to produce consistent estimators. To overcome these problems we develop percentile--"t", subsample bootstrap approximations to estimator distributions. Studentizing is employed to approximate scale, and the subsample bootstrap is used to estimate shape. The good performance of this approach is demonstrated both theoretically and numerically. Copyright The Econometric Society 2003.

Suggested Citation

  • Peter Hall & Qiwei Yao, 2003. "Inference in Arch and Garch Models with Heavy--Tailed Errors," Econometrica, Econometric Society, vol. 71(1), pages 285-317, January.
  • Handle: RePEc:ecm:emetrp:v:71:y:2003:i:1:p:285-317
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:71:y:2003:i:1:p:285-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.