IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v26y2007i6p609-641.html
   My bibliography  Save this article

Asymptotic and Bootstrap Inference for AR(∞) Processes with Conditional Heteroskedasticity

Author

Listed:
  • Silvia Goncalves
  • Lutz Kilian

Abstract

The main contribution of this paper is a proof of the asymptotic validity of the application of the bootstrap to AR(∞) processes with unmodelled conditional heteroskedasticity. We first derive the asymptotic properties of the least-squares estimator of the autoregressive sieve parameters when the data are generated by a stationary linear process with martingale difference errors that are possibly subject to conditional heteroskedasticity of unknown form. These results are then used in establishing that a suitably constructed bootstrap estimator will have the same limit distribution as the least-squares estimator. Our results provide theoretical justification for the use of either the conventional asymptotic approximation based on robust standard errors or the bootstrap approximation of the distribution of autoregressive parameters. A simulation study suggests that the bootstrap approach tends to be more accurate in small samples.

Suggested Citation

  • Silvia Goncalves & Lutz Kilian, 2007. "Asymptotic and Bootstrap Inference for AR(∞) Processes with Conditional Heteroskedasticity," Econometric Reviews, Taylor & Francis Journals, vol. 26(6), pages 609-641.
  • Handle: RePEc:taf:emetrv:v:26:y:2007:i:6:p:609-641
    DOI: 10.1080/07474930701624462
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930701624462
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474930701624462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Autoregression; Bootstrap; GARCH;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:26:y:2007:i:6:p:609-641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.