IDEAS home Printed from https://ideas.repec.org/p/syd/wpaper/2021-05.html
   My bibliography  Save this paper

Bootstrap Inference For Hawkes And General Point Processes

Author

Listed:
  • Cavaliere, Giuseppe
  • Lu,Ye
  • Rahbek, Anders
  • Staerk-Ostergaard, J

Abstract

Inference and testing in general point process models such as the Hawkes model is predominantly based on asymptotic approximations for likelihood based estimators and tests, as originally developed in Ogata (1978). As an alternative, and to improve fi nite sample performance, this paper considers bootstrap-based inference for interval estimation and testing. Specifi cally, for a wide class of point process models we consider a novel bootstrap scheme labeled ` fixed intensity bootstrap' (FIB), where the conditional intensity is kept fixed across bootstrap repetitions. The FIB, which is very simple to implement and fast in practice, naturally extends previous ideas from the bootstrap literature on time series in discrete time, where the so-called `fi xed design' and ` fixed volatility' bootstrap schemes have shown to be particularly useful and effective. We compare the FIB with the classic recursive bootstrap, which is here labeled `recursive intensity bootstrap' (RIB). In RIB algorithms, the intensity is stochastic in the bootstrap world and implementation of the bootstrap is more involved, due to its sequential structure. For both bootstrap schemes, no asymptotic theory is available; we therefore provide here a new bootstrap (asymptotic) theory, which allows to assess bootstrap validity. We also introduce novel `nonparametric' FIB and RIB schemes, which are based on resampling time-changed transformations of the original waiting times. We show effectiveness of the different bootstrap schemes in fi nite samples through a set of detailed Monte Carlo experiments. As far as we are aware, this is the fi rst detailed Monte Carlo study of bootstrap implementations for Hawkes-type processes. Finally, in order to illustrate, we provide applications of the bootstrap to both financial data and social media data.

Suggested Citation

  • Cavaliere, Giuseppe & Lu,Ye & Rahbek, Anders & Staerk-Ostergaard, J, 2021. "Bootstrap Inference For Hawkes And General Point Processes," Working Papers 2021-05, University of Sydney, School of Economics.
  • Handle: RePEc:syd:wpaper:2021-05
    as

    Download full text from publisher

    File URL: http://econ-wpseries.com/2021/202105.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Anders Rygh Swensen, 2006. "Bootstrap Algorithms for Testing and Determining the Cointegration Rank in VAR Models -super-1," Econometrica, Econometric Society, vol. 74(6), pages 1699-1714, November.
    2. Juan J. Dolado & Ramón María‐Dolores, 2002. "Evaluating changes in the Bank of Spain's interest rate target: an alternative approach using marked point processes," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(2), pages 159-182, May.
    3. Giuseppe Cavaliere & Rasmus Søndergaard Pedersen & Anders Rahbek, 2018. "The Fixed Volatility Bootstrap for a Class of Arch(q) Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 920-941, November.
    4. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    5. Agosto, Arianna & Cavaliere, Giuseppe & Kristensen, Dennis & Rahbek, Anders, 2016. "Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX)," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 640-663.
    6. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    7. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    8. Jakob Gulddahl Rasmussen, 2013. "Bayesian Inference for Hawkes Processes," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 623-642, September.
    9. BAUWENS, Luc & HAUTSCH, Nikolaus, 2006. "Modelling financial high frequency data using point processes," LIDAM Discussion Papers CORE 2006080, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. P. A. W Lewis & G. S. Shedler, 1979. "Simulation of nonhomogeneous poisson processes by thinning," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 26(3), pages 403-413, September.
    11. Dassios, Angelos & Zhao, Hongbiao, 2013. "Exact simulation of Hawkes process with exponentially decaying intensity," LSE Research Online Documents on Economics 51370, London School of Economics and Political Science, LSE Library.
    12. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    13. Giuseppe Cavaliere & Iliyan Georgiev, 2020. "Inference Under Random Limit Bootstrap Measures," Econometrica, Econometric Society, vol. 88(6), pages 2547-2574, November.
    14. Jensen, Søren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1203-1226, December.
    15. Clements, A.E. & Herrera, R. & Hurn, A.S., 2015. "Modelling interregional links in electricity price spikes," Energy Economics, Elsevier, vol. 51(C), pages 383-393.
    16. Giuseppe Cavaliere & Heino Bohn Nielsen & Anders Rahbek, 2015. "Bootstrap Testing of Hypotheses on Co‐Integration Relations in Vector Autoregressive Models," Econometrica, Econometric Society, vol. 83, pages 813-831, March.
    17. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    18. Søren Tolver Jensen & Anders Rahbek, 2004. "Asymptotic Normality of the QMLE Estimator of ARCH in the Nonstationary Case," Econometrica, Econometric Society, vol. 72(2), pages 641-646, March.
    19. Indeewara Perera & Javier Hidalgo & Mervyn J. Silvapulle, 2016. "A Goodness-of-Fit Test for a Class of Autoregressive Conditional Duration Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1111-1141, June.
    20. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    21. Perera, Indeewara & Silvapulle, Mervyn J., 2021. "Bootstrap based probability forecasting in multiplicative error models," Journal of Econometrics, Elsevier, vol. 221(1), pages 1-24.
    22. Clinet, Simon & Yoshida, Nakahiro, 2017. "Statistical inference for ergodic point processes and application to Limit Order Book," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1800-1839.
    23. Theis Lange & Anders Rahbek & Søren Tolver Jensen, 2011. "Estimation and Asymptotic Inference in the AR-ARCH Model," Econometric Reviews, Taylor & Francis Journals, vol. 30(2), pages 129-153.
    24. Perera, Indeewara & Silvapulle, Mervyn J., 2017. "Specification Tests For Multiplicative Error Models," Econometric Theory, Cambridge University Press, vol. 33(2), pages 413-438, April.
    25. Gao, Jiti & Kim, Nam Hyun & Saart, Patrick W., 2015. "A misspecification test for multiplicative error models of non-negative time series processes," Journal of Econometrics, Elsevier, vol. 189(2), pages 346-359.
    26. Giuseppe Cavaliere & Anders Rahbek & A. M. Robert Taylor, 2012. "Bootstrap Determination of the Co‐Integration Rank in Vector Autoregressive Models," Econometrica, Econometric Society, vol. 80(4), pages 1721-1740, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cavaliere, Giuseppe & Mikosch, Thomas & Rahbek, Anders & Vilandt, Frederik, 2024. "Tail behavior of ACD models and consequences for likelihood-based estimation," Journal of Econometrics, Elsevier, vol. 238(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Cavaliere & Indeewara Perera & Anders Rahbek, 2021. "Specification tests for GARCH processes," Papers 2105.14081, arXiv.org.
    2. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    3. Cavaliere, Giuseppe & Nielsen, Heino Bohn & Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2022. "Bootstrap inference on the boundary of the parameter space, with application to conditional volatility models," Journal of Econometrics, Elsevier, vol. 227(1), pages 241-263.
    4. Perera, Indeewara & Silvapulle, Mervyn J., 2021. "Bootstrap based probability forecasting in multiplicative error models," Journal of Econometrics, Elsevier, vol. 221(1), pages 1-24.
    5. Giuseppe Cavaliere & Anders Rahbek, 2019. "A Primer On Bootstrap Testing Of Hypotheses In Time Series Models: With An Application To Double Autoregressive Models," Discussion Papers 19-03, University of Copenhagen. Department of Economics.
    6. Perera, Indeewara & Koul, Hira L., 2017. "Fitting a two phase threshold multiplicative error model," Journal of Econometrics, Elsevier, vol. 197(2), pages 348-367.
    7. Dassios, Angelos & Zhao, Hongbiao, 2017. "Efficient simulation of clustering jumps with CIR intensity," LSE Research Online Documents on Economics 74205, London School of Economics and Political Science, LSE Library.
    8. Angelos Dassios & Hongbiao Zhao, 2017. "Efficient Simulation of Clustering Jumps with CIR Intensity," Operations Research, INFORMS, vol. 65(6), pages 1494-1515, December.
    9. Ke, Rui & Lu, Wanbo & Jia, Jing, 2021. "Evaluating multiplicative error models: A residual-based approach," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    10. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    11. Volodymyr Korniichuk, 2012. "Forecasting extreme electricity spot prices," Cologne Graduate School Working Paper Series 03-14, Cologne Graduate School in Management, Economics and Social Sciences.
    12. Boswijk, H. Peter & Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2016. "Inference on co-integration parameters in heteroskedastic vector autoregressions," Journal of Econometrics, Elsevier, vol. 192(1), pages 64-85.
    13. Giuseppe Cavaliere & Heino Bohn Nielsen & Anders Rahbek, 2017. "On the Consistency of Bootstrap Testing for a Parameter on the Boundary of the Parameter Space," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 513-534, July.
    14. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2018. "Modeling extreme risks in commodities and commodity currencies," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 108-120.
    15. Hira L. Koul & Indeewara Perera & Narayana Balakrishna, 2023. "A class of Minimum Distance Estimators in Markovian Multiplicative Error Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 87-115, May.
    16. Ban Zheng & Franc{c}ois Roueff & Fr'ed'eric Abergel, 2013. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Papers 1301.5007, arXiv.org, revised Feb 2014.
    17. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    18. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    19. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    20. Rachele Foschi & Francesca Lilla & Cecilia Mancini, 2020. "Warnings about future jumps: properties of the exponential Hawkes model," Working Papers 13/2020, University of Verona, Department of Economics.
    21. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.

    More about this item

    Keywords

    Self-exciting point processes; conditional intensity; bootstrap inference; Hawkes process.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:syd:wpaper:2021-05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Vanessa Holcombe (email available below). General contact details of provider: https://edirc.repec.org/data/deusyau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.