Multiply robust estimation of causal effects under principal ignorability
Author
Abstract
Suggested Citation
DOI: 10.1111/rssb.12538
Download full text from publisher
References listed on IDEAS
- Paolo Frumento & Fabrizia Mealli & Barbara Pacini & Donald B. Rubin, 2012. "Evaluating the Effect of Training on Wages in the Presence of Noncompliance, Nonemployment, and Missing Outcome Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 450-466, June.
- Zhichao Jiang & Peng Ding & Zhi Geng, 2016. "Principal causal effect identification and surrogate end point evaluation by multiple trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 829-848, September.
- Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Zheng Wenjing & van der Laan Mark, 2017. "Longitudinal Mediation Analysis with Time-varying Mediators and Exposures, with Application to Survival Outcomes," Journal of Causal Inference, De Gruyter, vol. 5(2), pages 1-24, September.
- Jelena Bradic & Stefan Wager & Yinchu Zhu, 2019. "Sparsity Double Robust Inference of Average Treatment Effects," Papers 1905.00744, arXiv.org.
- Corwin M. Zigler & Thomas R. Belin, 2012. "A Bayesian Approach to Improved Estimation of Causal Effect Predictiveness for a Principal Surrogate Endpoint," Biometrics, The International Biometric Society, vol. 68(3), pages 922-932, September.
- David Card, 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," Working Papers 696, Princeton University, Department of Economics, Industrial Relations Section..
- Brian L. Egleston & Daniel O. Scharfstein & Ellen MacKenzie, 2009. "On Estimation of the Survivor Average Causal Effect in Observational Studies When Important Confounders Are Missing Due to Death," Biometrics, The International Biometric Society, vol. 65(2), pages 497-504, June.
- Peter B. Gilbert & Michael G. Hudgens, 2008. "Evaluating Candidate Principal Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 64(4), pages 1146-1154, December.
- Frolich, Markus, 2007.
"Nonparametric IV estimation of local average treatment effects with covariates,"
Journal of Econometrics, Elsevier, vol. 139(1), pages 35-75, July.
- Markus Froelich, 2002. "Nonparametric IV estimation of local average treatment effects with covariates," University of St. Gallen Department of Economics working paper series 2002 2002-19, Department of Economics, University of St. Gallen.
- Frölich, Markus, 2002. "Nonparametric IV Estimation of Local Average Treatment Effects with Covariates," IZA Discussion Papers 588, Institute of Labor Economics (IZA).
- Douglas Hayden & Donna K. Pauler & David Schoenfeld, 2005. "An Estimator for Treatment Comparisons among Survivors in Randomized Trials," Biometrics, The International Biometric Society, vol. 61(1), pages 305-310, March.
- Imbens, Guido W & Angrist, Joshua D, 1994.
"Identification and Estimation of Local Average Treatment Effects,"
Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
- Joshua D. Angrist & Guido W. Imbens, 1995. "Identification and Estimation of Local Average Treatment Effects," NBER Technical Working Papers 0118, National Bureau of Economic Research, Inc.
- Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
- repec:fth:prinin:317 is not listed on IDEAS
- Fabrizia Mealli & Barbara Pacini, 2013. "Using Secondary Outcomes to Sharpen Inference in Randomized Experiments With Noncompliance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1120-1131, September.
- Thomas Lumley & Pamela A. Shaw & James Y. Dai, 2011. "Connections between Survey Calibration Estimators and Semiparametric Models for Incomplete Data," International Statistical Review, International Statistical Institute, vol. 79(2), pages 200-220, August.
- Zijian Guo & Dylan S. Small & Stuart A. Gansky & Jing Cheng, 2018. "Mediation analysis for count and zero‐inflated count data without sequential ignorability and its application in dental studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(2), pages 371-394, February.
- Linbo Wang & Eric Tchetgen Tchetgen, 2018. "Bounded, efficient and multiply robust estimation of average treatment effects using instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 531-550, June.
- Linbo Wang & Thomas S. Richardson & Xiao-Hua Zhou, 2017. "Causal analysis of ordinal treatments and binary outcomes under truncation by death," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 719-735, June.
- Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
- Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
- Han Hong & Denis Nekipelov, 2010. "Semiparametric efficiency in nonlinear LATE models," Quantitative Economics, Econometric Society, vol. 1(2), pages 279-304, November.
- Yun Li & Jeremy M.G. Taylor & Michael R. Elliott, 2010. "A Bayesian Approach to Surrogacy Assessment Using Principal Stratification in Clinical Trials," Biometrics, The International Biometric Society, vol. 66(2), pages 523-531, June.
- David Card, 1993.
"Using Geographic Variation in College Proximity to Estimate the Return to Schooling,"
Working Papers
696, Princeton University, Department of Economics, Industrial Relations Section..
- David Card, 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," NBER Working Papers 4483, National Bureau of Economic Research, Inc.
- Tan, Zhiqiang, 2006. "Regression and Weighting Methods for Causal Inference Using Instrumental Variables," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1607-1618, December.
- Ying Huang & Peter B. Gilbert, 2011. "Comparing Biomarkers as Principal Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 67(4), pages 1442-1451, December.
- Peng Ding & Jiannan Lu, 2017. "Principal stratification analysis using principal scores," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 757-777, June.
- Alessandra Mattei & Fabrizia Mealli & Barbara Pacini, 2014. "Identification of causal effects in the presence of nonignorable missing outcome values," Biometrics, The International Biometric Society, vol. 70(2), pages 278-288, June.
- Imai, Kosuke, 2008. "Sharp bounds on the causal effects in randomized experiments with "truncation-by-death"," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 144-149, February.
- VanderWeele Tyler J, 2011. "Principal Stratification -- Uses and Limitations," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-14, July.
- VanderWeele, Tyler J., 2008. "Simple relations between principal stratification and direct and indirect effects," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2957-2962, December.
- Elizabeth L. Ogburn & Andrea Rotnitzky & James M. Robins, 2015. "Doubly robust estimation of the local average treatment effect curve," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 373-396, March.
- Laura Forastiere & Alessandra Mattei & Peng Ding, 2018. "Principal ignorability in mediation analysis: through and beyond sequential ignorability," Biometrika, Biometrika Trust, vol. 105(4), pages 979-986.
- Xu Shi & Wang Miao & Jennifer C. Nelson & Eric J. Tchetgen Tchetgen, 2020. "Multiply robust causal inference with double‐negative control adjustment for categorical unmeasured confounding," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(2), pages 521-540, April.
- Dean Follmann, 2006. "Augmented Designs to Assess Immune Response in Vaccine Trials," Biometrics, The International Biometric Society, vol. 62(4), pages 1161-1169, December.
- Fan Yang & José R. Zubizarreta & Dylan S. Small & Scott Lorch & Paul R. Rosenbaum, 2014. "Dissonant Conclusions When Testing the Validity of an Instrumental Variable," The American Statistician, Taylor & Francis Journals, vol. 68(4), pages 253-263, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Benjamin R. Baer & Robert L. Strawderman & Ashkan Ertefaie, 2023. "Discussion on “Instrumental variable estimation of the causal hazard ratio,” by Linbo Wang, Eric Tchetgen Tchetgen, Torben Martinussen, and Stijn Vansteelandt," Biometrics, The International Biometric Society, vol. 79(2), pages 554-558, June.
- Zhexiao Lin & Pablo Crespo, 2024. "Variance reduction combining pre-experiment and in-experiment data," Papers 2410.09027, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhichao Jiang & Peng Ding & Zhi Geng, 2016. "Principal causal effect identification and surrogate end point evaluation by multiple trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 829-848, September.
- Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
- Haitian Xie, 2020. "Efficient and Robust Estimation of the Generalized LATE Model," Papers 2001.06746, arXiv.org, revised Feb 2022.
- Gilbert Peter B. & Blette Bryan S. & Shepherd Bryan E. & Hudgens Michael G., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
- Peng Ding & Jiannan Lu, 2017. "Principal stratification analysis using principal scores," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 757-777, June.
- Huber Martin & Wüthrich Kaspar, 2019.
"Local Average and Quantile Treatment Effects Under Endogeneity: A Review,"
Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
- Huber, Martin & Wüthrich, Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," University of California at San Diego, Economics Working Paper Series qt4j29d8sc, Department of Economics, UC San Diego.
- Hugo Bodory & Martin Huber & Michael Lechner, 2024.
"The Finite Sample Performance of Instrumental Variable-Based Estimators of the Local Average Treatment Effect When Controlling for Covariates,"
Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2053-2078, October.
- Hugo Bodory & Martin Huber & Michael Lechner, 2022. "The finite sample performance of instrumental variable-based estimators of the Local Average Treatment Effect when controlling for covariates," Papers 2212.07379, arXiv.org.
- Markus Frölich & Martin Huber, 2014.
"Treatment Evaluation With Multiple Outcome Periods Under Endogeneity and Attrition,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1697-1711, December.
- Frölich, Markus & Huber, Martin, 2014. "Treatment evaluation with multiple outcome periods under endogeneity and attrition," Economics Working Paper Series 1404, University of St. Gallen, School of Economics and Political Science.
- Frölich, Markus & Huber, Martin, 2014. "Treatment Evaluation with Multiple Outcome Periods under Endogeneity and Attrition," IZA Discussion Papers 7972, Institute of Labor Economics (IZA).
- Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
- Simon Calmar Andersen & Louise Beuchert & Phillip Heiler & Helena Skyt Nielsen, 2023. "A Guide to Impact Evaluation under Sample Selection and Missing Data: Teacher's Aides and Adolescent Mental Health," Papers 2308.04963, arXiv.org.
- Hans Fricke & Markus Frölich & Martin Huber & Michael Lechner, 2020.
"Endogeneity and non‐response bias in treatment evaluation – nonparametric identification of causal effects by instruments,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 481-504, August.
- Fricke, Hans & Frölich, Markus & Huber, Martin & Lechner, Michael, 2015. "Endogeneity and non-response bias in treatment evaluation - nonparametric identification of causal effects by instruments," FSES Working Papers 459, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Fricke, Hans & Frölich, Markus & Huber, Martin & Lechner, Michael, 2015. "Endogeneity and Non-Response Bias in Treatment Evaluation: Nonparametric Identification of Causal Effects by Instruments," IZA Discussion Papers 9428, Institute of Labor Economics (IZA).
- Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
- Choi, Jin-young & Lee, Goeun & Lee, Myoung-jae, 2023. "Endogenous treatment effect for any response conditional on control propensity score," Statistics & Probability Letters, Elsevier, vol. 196(C).
- Manu Navjeevan & Rodrigo Pinto & Andres Santos, 2023. "Identification and Estimation in a Class of Potential Outcomes Models," Papers 2310.05311, arXiv.org.
- Myoung‐jae Lee, 2021. "Instrument residual estimator for any response variable with endogenous binary treatment," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 612-635, July.
- Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
- Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013.
"Program evaluation with high-dimensional data,"
CeMMAP working papers
CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2015. "Program evaluation with high-dimensional data," CeMMAP working papers 55/15, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2014. "Program evaluation with high-dimensional data," CeMMAP working papers CWP33/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers 57/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2015. "Program evaluation with high-dimensional data," CeMMAP working papers CWP55/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2014. "Program evaluation with high-dimensional data," CeMMAP working papers 33/14, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers 77/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP57/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Laura Forastiere & Patrizia Lattarulo & Marco Mariani & Fabrizia Mealli & Laura Razzolini, 2021.
"Exploring Encouragement, Treatment, and Spillover Effects Using Principal Stratification, With Application to a Field Experiment on Teens’ Museum Attendance,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 244-258, January.
- Laura Forastiere & Patrizia Lattarulo & Marco Mariani & Fabrizia Mealli & Laura Razzolini, 2019. "Exploring encouragement, treatment and spillover effects using principal stratification, with application to a field experiment on teens' museum attendance," Natural Field Experiments 00673, The Field Experiments Website.
- Tymon Sloczynski & S. Derya Uysal & Jeffrey M. Wooldridge & Derya Uysal, 2022.
"Abadie's Kappa and Weighting Estimators of the Local Average Treatment Effect,"
CESifo Working Paper Series
9715, CESifo.
- Tymon Sloczynski & Derya Uysal & Jeffrey Wooldridge, 2023. "Abadie's Kappa and Weighting Estimators of the Local Average Treatment Effect," Rationality and Competition Discussion Paper Series 424, CRC TRR 190 Rationality and Competition.
- Sloczynski, Tymon & Uysal, Derya & Wooldridge, Jeffrey M., 2022. "Abadie's Kappa and Weighting Estimators of the Local Average Treatment Effect," IZA Discussion Papers 15241, Institute of Labor Economics (IZA).
- Tymon S{l}oczy'nski & S. Derya Uysal & Jeffrey M. Wooldridge, 2022. "Abadie's Kappa and Weighting Estimators of the Local Average Treatment Effect," Papers 2204.07672, arXiv.org, revised Feb 2024.
- Derya Uysal, 2023. "Abadie's kappa and weighting estimators of the local average treatment effect," Economics Virtual Symposium 2023 01, Stata Users Group.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:84:y:2022:i:4:p:1423-1445. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.