Identification of causal effects in the presence of nonignorable missing outcome values
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Paolo Frumento & Fabrizia Mealli & Barbara Pacini & Donald B. Rubin, 2012. "Evaluating the Effect of Training on Wages in the Presence of Noncompliance, Nonemployment, and Missing Outcome Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 450-466, June.
- Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
- James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
- Tamer, Elie, 2010. "Partial Identification in Econometrics," Scholarly Articles 34728615, Harvard University Department of Economics.
- A. Mattei & F. Mealli, 2007. "Application of the Principal Stratification Approach to the Faenza Randomized Experiment on Breast Self-Examination," Biometrics, The International Biometric Society, vol. 63(2), pages 437-446, June.
- Constantine E. Frangakis & Donald B. Rubin & Ming-Wen An & Ellen MacKenzie, 2007. "Principal Stratification Designs to Estimate Input Data Missing Due to Death," Biometrics, The International Biometric Society, vol. 63(3), pages 641-649, September.
- Jing Cheng & Dylan S. Small & Zhiqiang Tan & Thomas R. Ten Have, 2009. "Efficient nonparametric estimation of causal effects in randomized trials with noncompliance," Biometrika, Biometrika Trust, vol. 96(1), pages 19-36.
- Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.
- Little, Roderick J A, 1985. "A Note about Models for Selectivity Bias," Econometrica, Econometric Society, vol. 53(6), pages 1469-1474, November.
- Cheti Nicoletti, 2010. "Poverty analysis with missing data: alternative estimators compared," Empirical Economics, Springer, vol. 38(1), pages 1-22, February.
- Imai, Kosuke, 2008. "Sharp bounds on the causal effects in randomized experiments with "truncation-by-death"," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 144-149, February.
- Junni L. Zhang & Donald B. Rubin, 2003. "Estimation of Causal Effects via Principal Stratification When Some Outcomes are Truncated by “Deathâ€," Journal of Educational and Behavioral Statistics, , vol. 28(4), pages 353-368, December.
- Hyungsik Roger Moon & Frank Schorfheide, 2012.
"Bayesian and Frequentist Inference in Partially Identified Models,"
Econometrica, Econometric Society, vol. 80(2), pages 755-782, March.
- Hyungsik Roger Moon & Frank Schorfheide, 2009. "Bayesian and Frequentist Inference in Partially Identified Models," NBER Working Papers 14882, National Bureau of Economic Research, Inc.
- Elie Tamer, 2010. "Partial Identification in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 167-195, September.
- Michael E. Sobel & Bengt Muthén, 2012. "Compliance Mixture Modelling with a Zero-Effect Complier Class and Missing Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1037-1045, December.
- David S. Lee, 2009. "Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(3), pages 1071-1102.
- Yun Li & Jeremy M.G. Taylor & Michael R. Elliott, 2010. "A Bayesian Approach to Surrogacy Assessment Using Principal Stratification in Clinical Trials," Biometrics, The International Biometric Society, vol. 66(2), pages 523-531, June.
- Hua Chen & Zhi Geng & Xiao-Hua Zhou, 2009. "Identifiability and Estimation of Causal Effects in Randomized Trials with Noncompliance and Completely Nonignorable Missing Data," Biometrics, The International Biometric Society, vol. 65(3), pages 675-682, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhichao Jiang & Peng Ding & Zhi Geng, 2016. "Principal causal effect identification and surrogate end point evaluation by multiple trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 829-848, September.
- Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
- Fabrizia Mealli & Barbara Pacini & Elena Stanghellini, 2016. "Identification of Principal Causal Effects Using Additional Outcomes in Concentration Graphs," Journal of Educational and Behavioral Statistics, , vol. 41(5), pages 463-480, October.
- Andrea Mercatanti & Fan Li, 2017. "Do debit cards decrease cash demand?: causal inference and sensitivity analysis using principal stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 759-776, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fan Yang & Dylan S. Small, 2016. "Using post-outcome measurement information in censoring-by-death problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 299-318, January.
- Markus Frölich & Martin Huber, 2014.
"Treatment Evaluation With Multiple Outcome Periods Under Endogeneity and Attrition,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1697-1711, December.
- Frölich, Markus & Huber, Martin, 2014. "Treatment evaluation with multiple outcome periods under endogeneity and attrition," Economics Working Paper Series 1404, University of St. Gallen, School of Economics and Political Science.
- Frölich, Markus & Huber, Martin, 2014. "Treatment Evaluation with Multiple Outcome Periods under Endogeneity and Attrition," IZA Discussion Papers 7972, Institute of Labor Economics (IZA).
- Bartalotti, Otávio & Kédagni, Désiré & Possebom, Vitor, 2023.
"Identifying marginal treatment effects in the presence of sample selection,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 565-584.
- Bartalotti, Otávio & Kedagni, Desire & Possebom, Vitor, 2019. "Identifying Marginal Treatment Effects in the Presence of Sample Selection," ISU General Staff Papers 201909150700001080, Iowa State University, Department of Economics.
- Ot'avio Bartalotti & D'esir'e K'edagni & Vitor Possebom, 2021. "Identifying Marginal Treatment Effects in the Presence of Sample Selection," Papers 2112.07014, arXiv.org.
- Bartalotti, Otávio & Kédagni, Désiré & Possebom, Vítor Augusto, 2021. "Identifying Marginal Treatment Effects in the Presence of Sample Selection," IZA Discussion Papers 14428, Institute of Labor Economics (IZA).
- Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.
- VanderWeele Tyler J, 2011. "Principal Stratification -- Uses and Limitations," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-14, July.
- Huber, Martin & Meier, Jonas & Wallimann, Hannes, 2022.
"Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets,"
Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 22-39.
- Martin Huber & Jonas Meier & Hannes Wallimann, 2021. "Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets," Papers 2105.01426, arXiv.org, revised Jun 2022.
- Wenlong Ji & Lihua Lei & Asher Spector, 2023. "Model-Agnostic Covariate-Assisted Inference on Partially Identified Causal Effects," Papers 2310.08115, arXiv.org.
- Linbo Wang & Thomas S. Richardson & Xiao-Hua Zhou, 2017. "Causal analysis of ordinal treatments and binary outcomes under truncation by death," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 719-735, June.
- Hans Fricke & Markus Frölich & Martin Huber & Michael Lechner, 2020.
"Endogeneity and non‐response bias in treatment evaluation – nonparametric identification of causal effects by instruments,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 481-504, August.
- Fricke, Hans & Frölich, Markus & Huber, Martin & Lechner, Michael, 2015. "Endogeneity and non-response bias in treatment evaluation - nonparametric identification of causal effects by instruments," FSES Working Papers 459, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Fricke, Hans & Frölich, Markus & Huber, Martin & Lechner, Michael, 2015. "Endogeneity and Non-Response Bias in Treatment Evaluation: Nonparametric Identification of Causal Effects by Instruments," IZA Discussion Papers 9428, Institute of Labor Economics (IZA).
- Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
- Peng Ding & Jiannan Lu, 2017. "Principal stratification analysis using principal scores," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 757-777, June.
- Zhichao Jiang & Peng Ding & Zhi Geng, 2016. "Principal causal effect identification and surrogate end point evaluation by multiple trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 829-848, September.
- Laura Forastiere & Patrizia Lattarulo & Marco Mariani & Fabrizia Mealli & Laura Razzolini, 2021.
"Exploring Encouragement, Treatment, and Spillover Effects Using Principal Stratification, With Application to a Field Experiment on Teens’ Museum Attendance,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 244-258, January.
- Laura Forastiere & Patrizia Lattarulo & Marco Mariani & Fabrizia Mealli & Laura Razzolini, 2019. "Exploring encouragement, treatment and spillover effects using principal stratification, with application to a field experiment on teens' museum attendance," Natural Field Experiments 00673, The Field Experiments Website.
- Yuan Liao & Anna Simoni, 2012.
"Semi-parametric Bayesian Partially Identified Models based on Support Function,"
Papers
1212.3267, arXiv.org, revised Nov 2013.
- Liao, Yuan & Simoni, Anna, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," MPRA Paper 43262, University Library of Munich, Germany.
- Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
- Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
- Ahfock, Daniel & Pyne, Saumyadipta & McLachlan, Geoffrey J., 2022. "Statistical file-matching of non-Gaussian data: A game theoretic approach," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Fabrizia Mealli & Barbara Pacini & Elena Stanghellini, 2016. "Identification of Principal Causal Effects Using Additional Outcomes in Concentration Graphs," Journal of Educational and Behavioral Statistics, , vol. 41(5), pages 463-480, October.
- Abhinandan Dalal & Patrick Blobaum & Shiva Kasiviswanathan & Aaditya Ramdas, 2024. "Anytime-Valid Inference for Double/Debiased Machine Learning of Causal Parameters," Papers 2408.09598, arXiv.org, revised Sep 2024.
- Martin Huber & Giovanni Mellace, 2014. "Testing exclusion restrictions and additive separability in sample selection models," Empirical Economics, Springer, vol. 47(1), pages 75-92, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:70:y:2014:i:2:p:278-288. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.