IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v8y2020i1p54-69n3.html
   My bibliography  Save this article

Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial

Author

Listed:
  • Gilbert Peter B.

    (Department of Biostatistics, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America)

  • Blette Bryan S.

    (Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, 27599, United States of America)

  • Shepherd Bryan E.

    (Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, United States of America)

  • Hudgens Michael G.

    (Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, 27599, United States of America)

Abstract

While the HVTN 505 trial showed no overall efficacy of the tested vaccine to prevent HIV infection over placebo, markers measuring immune response to vaccination were strongly correlated with infection. This finding generated the hypothesis that some marker-defined vaccinated subgroups were partially protected whereas others had their risk increased. This hypothesis can be assessed using the principal stratification framework (Frangakis and Rubin, 2002) for studying treatment effect modification by an intermediate response variable, using methods in the sub-field of principal surrogate (PS) analysis that studies multiple principal strata. Unfortunately, available methods for PS analysis require an augmented study design not available in HVTN 505, and make untestable structural risk assumptions, motivating a need for more robust PS methods. Fortunately, another sub-field of principal stratification, survivor average causal effect (SACE) analysis (Rubin, 2006) – which studies effects in a single principal stratum – provides many methods not requiring an augmented design and making fewer assumptions. We show how, for a binary intermediate response variable, methods developed for SACE analysis can be adapted to PS analysis, providing new and more robust PS methods. Application to HVTN 505 supports that the vaccine partially protected individuals with vaccine-induced T-cells expressing certain combinations of functions.

Suggested Citation

  • Gilbert Peter B. & Blette Bryan S. & Shepherd Bryan E. & Hudgens Michael G., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
  • Handle: RePEc:bpj:causin:v:8:y:2020:i:1:p:54-69:n:3
    DOI: 10.1515/jci-2019-0022
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2019-0022
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2019-0022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    2. Peng Ding & Jiannan Lu, 2017. "Principal stratification analysis using principal scores," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 757-777, June.
    3. Peter B. Gilbert & Ronald J. Bosch & Michael G. Hudgens, 2003. "Sensitivity Analysis for the Assessment of Causal Vaccine Effects on Viral Load in HIV Vaccine Trials," Biometrics, The International Biometric Society, vol. 59(3), pages 531-541, September.
    4. Min Zhang & Anastasios A. Tsiatis & Marie Davidian, 2008. "Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 64(3), pages 707-715, September.
    5. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    6. Corwin M. Zigler & Thomas R. Belin, 2012. "A Bayesian Approach to Improved Estimation of Causal Effect Predictiveness for a Principal Surrogate Endpoint," Biometrics, The International Biometric Society, vol. 68(3), pages 922-932, September.
    7. Imai, Kosuke, 2008. "Sharp bounds on the causal effects in randomized experiments with "truncation-by-death"," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 144-149, February.
    8. Porter Kristin E. & Gruber Susan & van der Laan Mark J. & Sekhon Jasjeet S., 2011. "The Relative Performance of Targeted Maximum Likelihood Estimators," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-34, August.
    9. Ying Huang & Peter B. Gilbert & Julian Wolfson, 2013. "Design and Estimation for Evaluating Principal Surrogate Markers in Vaccine Trials," Biometrics, The International Biometric Society, vol. 69(2), pages 301-309, June.
    10. Peter B. Gilbert & Michael G. Hudgens, 2008. "Evaluating Candidate Principal Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 64(4), pages 1146-1154, December.
    11. Bryan E. Shepherd & Peter B. Gilbert & Charles T. Dupont, 2011. "Sensitivity Analyses Comparing Time-to-Event Outcomes Only Existing in a Subset Selected Postrandomization and Relaxing Monotonicity," Biometrics, The International Biometric Society, vol. 67(3), pages 1100-1110, September.
    12. Linbo Wang & Xiao-Hua Zhou & Thomas S. Richardson, 2017. "Identification and estimation of causal effects with outcomes truncated by death," Biometrika, Biometrika Trust, vol. 104(3), pages 597-612.
    13. Dustin M. Long & Michael G. Hudgens, 2013. "Sharpening Bounds on Principal Effects with Covariates," Biometrics, The International Biometric Society, vol. 69(4), pages 812-819, December.
    14. Yannis Jemiai & Andrea Rotnitzky & Bryan E. Shepherd & Peter B. Gilbert, 2007. "Semiparametric estimation of treatment effects given base‐line covariates on an outcome measured after a post‐randomization event occurs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 879-901, November.
    15. Dean Follmann, 2006. "Augmented Designs to Assess Immune Response in Vaccine Trials," Biometrics, The International Biometric Society, vol. 62(4), pages 1161-1169, December.
    16. Yun Li & Jeremy M.G. Taylor & Michael R. Elliott, 2010. "A Bayesian Approach to Surrogacy Assessment Using Principal Stratification in Clinical Trials," Biometrics, The International Biometric Society, vol. 66(2), pages 523-531, June.
    17. Rose Sherri & van der Laan Mark J., 2011. "A Targeted Maximum Likelihood Estimator for Two-Stage Designs," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-21, March.
    18. Yue Wang & Jeremy M. G. Taylor, 2002. "A Measure of the Proportion of Treatment Effect Explained by a Surrogate Marker," Biometrics, The International Biometric Society, vol. 58(4), pages 803-812, December.
    19. Chiba Yasutaka, 2012. "The Large Sample Bounds on the Principal Strata Effect with Application to a Prostate Cancer Prevention Trial," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    2. Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
    3. Shanshan Luo & Wei Li & Yangbo He, 2023. "Causal inference with outcomes truncated by death in multiarm studies," Biometrics, The International Biometric Society, vol. 79(1), pages 502-513, March.
    4. Gilbert Peter B. & Hudgens Michael G. & Wolfson Julian, 2011. "Commentary on "Principal Stratification -- a Goal or a Tool?" by Judea Pearl," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-15, September.
    5. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    6. VanderWeele Tyler J, 2011. "Principal Stratification -- Uses and Limitations," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-14, July.
    7. Rui Zhuang & Ying Qing Chen, 2020. "Measuring Surrogacy in Clinical Research," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 295-323, December.
    8. Gilbert Peter B. & Gabriel Erin E. & Huang Ying & Chan Ivan S.F., 2015. "Surrogate Endpoint Evaluation: Principal Stratification Criteria and the Prentice Definition," Journal of Causal Inference, De Gruyter, vol. 3(2), pages 157-175, September.
    9. Fan Yang & Dylan S. Small, 2016. "Using post-outcome measurement information in censoring-by-death problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 299-318, January.
    10. Corwin M. Zigler & Thomas R. Belin, 2012. "A Bayesian Approach to Improved Estimation of Causal Effect Predictiveness for a Principal Surrogate Endpoint," Biometrics, The International Biometric Society, vol. 68(3), pages 922-932, September.
    11. Ying Huang & Peter B. Gilbert & Julian Wolfson, 2013. "Design and Estimation for Evaluating Principal Surrogate Markers in Vaccine Trials," Biometrics, The International Biometric Society, vol. 69(2), pages 301-309, June.
    12. Ying Huang, 2018. "Evaluating principal surrogate markers in vaccine trials in the presence of multiphase sampling," Biometrics, The International Biometric Society, vol. 74(1), pages 27-39, March.
    13. Halloran M. Elizabeth & Hudgens Michael G., 2012. "Causal Inference for Vaccine Effects on Infectiousness," The International Journal of Biostatistics, De Gruyter, vol. 8(2), pages 1-40, January.
    14. Zhichao Jiang & Peng Ding & Zhi Geng, 2016. "Principal causal effect identification and surrogate end point evaluation by multiple trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 829-848, September.
    15. Ying Huang & Peter B. Gilbert, 2011. "Comparing Biomarkers as Principal Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 67(4), pages 1442-1451, December.
    16. Michael R. Elliott & Anna Conlon & Yun Li, 2013. "Discussion on “Surrogate Measures and Consistent Surrogates”," Biometrics, The International Biometric Society, vol. 69(3), pages 565-569, September.
    17. Erin E. Gabriel & Michael C. Sachs & Dean A. Follmann & Therese M‐L. Andersson, 2020. "A unified evaluation of differential vaccine efficacy," Biometrics, The International Biometric Society, vol. 76(4), pages 1053-1063, December.
    18. Dustin M. Long & Michael G. Hudgens, 2013. "Sharpening Bounds on Principal Effects with Covariates," Biometrics, The International Biometric Society, vol. 69(4), pages 812-819, December.
    19. Wenlong Ji & Lihua Lei & Asher Spector, 2023. "Model-Agnostic Covariate-Assisted Inference on Partially Identified Causal Effects," Papers 2310.08115, arXiv.org, revised Nov 2024.
    20. Linbo Wang & Thomas S. Richardson & Xiao-Hua Zhou, 2017. "Causal analysis of ordinal treatments and binary outcomes under truncation by death," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 719-735, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:8:y:2020:i:1:p:54-69:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.