IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v64y2024i4d10.1007_s10614-023-10507-y.html
   My bibliography  Save this article

The Finite Sample Performance of Instrumental Variable-Based Estimators of the Local Average Treatment Effect When Controlling for Covariates

Author

Listed:
  • Hugo Bodory

    (Vice-President’s Board (Research & Faculty), University of St. Gallen)

  • Martin Huber

    (University of Fribourg)

  • Michael Lechner

    (University of St. Gallen
    CEPR and PSI
    CESIfo
    IAB)

Abstract

This paper investigates the finite sample performance of a range of parametric, semi-parametric, and non-parametric instrumental variable estimators when controlling for a fixed set of covariates to evaluate the local average treatment effect. Our simulation designs are based on empirical labor market data from the US and vary in several dimensions, including effect heterogeneity, instrument selectivity, instrument strength, outcome distribution, and sample size. Among the estimators and simulations considered, non-parametric estimation based on the random forest (a machine learner controlling for covariates in a data-driven way) performs competitive in terms of the average coverage rates of the (bootstrap-based) 95% confidence intervals, while also being relatively precise. Non-parametric kernel regression as well as certain versions of semi-parametric radius matching on the propensity score, pair matching on the covariates, and inverse probability weighting also have a decent coverage, but are less precise than the random forest-based method. In terms of the average root mean squared error of LATE estimation, kernel regression performs best, closely followed by the random forest method, which has the lowest average absolute bias.

Suggested Citation

  • Hugo Bodory & Martin Huber & Michael Lechner, 2024. "The Finite Sample Performance of Instrumental Variable-Based Estimators of the Local Average Treatment Effect When Controlling for Covariates," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2053-2078, October.
  • Handle: RePEc:kap:compec:v:64:y:2024:i:4:d:10.1007_s10614-023-10507-y
    DOI: 10.1007/s10614-023-10507-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10507-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10507-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Instrumental variables; Local average treatment effects; Empirical Monte Carlo study;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:4:d:10.1007_s10614-023-10507-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.