IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v66y2010i2p523-531.html
   My bibliography  Save this article

A Bayesian Approach to Surrogacy Assessment Using Principal Stratification in Clinical Trials

Author

Listed:
  • Yun Li
  • Jeremy M.G. Taylor
  • Michael R. Elliott

Abstract

No abstract is available for this item.

Suggested Citation

  • Yun Li & Jeremy M.G. Taylor & Michael R. Elliott, 2010. "A Bayesian Approach to Surrogacy Assessment Using Principal Stratification in Clinical Trials," Biometrics, The International Biometric Society, vol. 66(2), pages 523-531, June.
  • Handle: RePEc:bla:biomet:v:66:y:2010:i:2:p:523-531
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2009.01303.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    2. Marshall M. Joffe & Tom Greene, 2009. "Related Causal Frameworks for Surrogate Outcomes," Biometrics, The International Biometric Society, vol. 65(2), pages 530-538, June.
    3. Hua Chen & Zhi Geng & Jinzhu Jia, 2007. "Criteria for surrogate end points," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 919-932, November.
    4. VanderWeele, Tyler J., 2008. "Simple relations between principal stratification and direct and indirect effects," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2957-2962, December.
    5. E. S. Venkatraman & Colin B. Begg, 1999. "Properties of A Nonparametric Test for Early Comparison of Treatments in Clinical Trials in the Presence of Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 55(4), pages 1171-1176, December.
    6. Elizabeth S. Garrett & Scott L. Zeger, 2000. "Latent Class Model Diagnosis," Biometrics, The International Biometric Society, vol. 56(4), pages 1055-1067, December.
    7. Paul E. Green & Taesung Park, 2003. "A Bayesian Hierarchical Model for Categorical Data with Nonignorable Nonresponse," Biometrics, The International Biometric Society, vol. 59(4), pages 886-896, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Corwin M. Zigler & Thomas R. Belin, 2012. "A Bayesian Approach to Improved Estimation of Causal Effect Predictiveness for a Principal Surrogate Endpoint," Biometrics, The International Biometric Society, vol. 68(3), pages 922-932, September.
    2. Ghosh, Debashis, 2012. "A causal framework for surrogate endpoints with semi-competing risks data," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1898-1902.
    3. Ariel Alonso & Wim Van der Elst & Geert Molenberghs & Marc Buyse & Tomasz Burzykowski, 2015. "On the relationship between the causal-inference and meta-analytic paradigms for the validation of surrogate endpoints," Biometrics, The International Biometric Society, vol. 71(1), pages 15-24, March.
    4. Rui Zhuang & Ying Qing Chen, 2020. "Measuring Surrogacy in Clinical Research," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 295-323, December.
    5. Michael R. Elliott & Anna Conlon & Yun Li, 2013. "Discussion on “Surrogate Measures and Consistent Surrogates”," Biometrics, The International Biometric Society, vol. 69(3), pages 565-569, September.
    6. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    7. Ying Huang & Peter B. Gilbert, 2011. "Comparing Biomarkers as Principal Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 67(4), pages 1442-1451, December.
    8. Alessandra Mattei & Fabrizia Mealli & Barbara Pacini, 2014. "Identification of causal effects in the presence of nonignorable missing outcome values," Biometrics, The International Biometric Society, vol. 70(2), pages 278-288, June.
    9. Gilbert Peter B. & Blette Bryan S. & Shepherd Bryan E. & Hudgens Michael G., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    10. Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
    11. Ying Huang & Peter B. Gilbert & Julian Wolfson, 2013. "Design and Estimation for Evaluating Principal Surrogate Markers in Vaccine Trials," Biometrics, The International Biometric Society, vol. 69(2), pages 301-309, June.
    12. VanderWeele Tyler J, 2011. "Principal Stratification -- Uses and Limitations," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-14, July.
    13. Debashis Ghosh & Jeremy M. G. Taylor & Daniel J. Sargent, 2012. "Rejoinder for “Meta-analysis for Surrogacy: Accelerated Failure Time Models and Semicompeting Risks Modeling”," Biometrics, The International Biometric Society, vol. 68(1), pages 245-247, March.
    14. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    15. Li He & Yu-Bo Wang & William C. Bridges & Zhulin He & S. Megan Che, 2023. "Bayesian Framework for Causal Inference with Principal Stratification and Clusters," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 114-140, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. VanderWeele Tyler J, 2011. "Principal Stratification -- Uses and Limitations," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-14, July.
    2. Gilbert Peter B. & Gabriel Erin E. & Huang Ying & Chan Ivan S.F., 2015. "Surrogate Endpoint Evaluation: Principal Stratification Criteria and the Prentice Definition," Journal of Causal Inference, De Gruyter, vol. 3(2), pages 157-175, September.
    3. Fatema Shafie Khorassani & Jeremy M. G. Taylor & Niko Kaciroti & Michael R. Elliott, 2023. "Incorporating Covariates into Measures of Surrogate Paradox Risk," Stats, MDPI, vol. 6(1), pages 1-23, February.
    4. Tyler J. VanderWeele, 2013. "Surrogate Measures and Consistent Surrogates," Biometrics, The International Biometric Society, vol. 69(3), pages 561-565, September.
    5. Michael J. Daniels & Jason A. Roy & Chanmin Kim & Joseph W. Hogan & Michael G. Perri, 2012. "Bayesian Inference for the Causal Effect of Mediation," Biometrics, The International Biometric Society, vol. 68(4), pages 1028-1036, December.
    6. Guido Imbens & Nathan Kallus & Xiaojie Mao & Yuhao Wang, 2022. "Long-term Causal Inference Under Persistent Confounding via Data Combination," Papers 2202.07234, arXiv.org, revised Aug 2024.
    7. Julian Wolfson & Peter Gilbert, 2010. "Statistical Identifiability and the Surrogate Endpoint Problem, with Application to Vaccine Trials," Biometrics, The International Biometric Society, vol. 66(4), pages 1153-1161, December.
    8. Zhichao Jiang & Peng Ding & Zhi Geng, 2016. "Principal causal effect identification and surrogate end point evaluation by multiple trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 829-848, September.
    9. Pearl Judea, 2011. "Principal Stratification -- a Goal or a Tool?," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-13, March.
    10. Marshall M. Joffe, 2013. "Discussion on “Surrogate Measures and Consistent Surrogates”," Biometrics, The International Biometric Society, vol. 69(3), pages 569-573, September.
    11. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    12. Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.
    13. Laura Forastiere & Patrizia Lattarulo & Marco Mariani & Fabrizia Mealli & Laura Razzolini, 2021. "Exploring Encouragement, Treatment, and Spillover Effects Using Principal Stratification, With Application to a Field Experiment on Teens’ Museum Attendance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 244-258, January.
    14. Martin Huber & Mark Schelker & Anthony Strittmatter, 2022. "Direct and Indirect Effects based on Changes-in-Changes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 432-443, January.
    15. Bingbo Gao & Jianyu Yang & Ziyue Chen & George Sugihara & Manchun Li & Alfred Stein & Mei-Po Kwan & Jinfeng Wang, 2023. "Causal inference from cross-sectional earth system data with geographical convergent cross mapping," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Huber, Martin & Steinmayr, Andreas, 2017. "A framework for separating individual treatment effects from spillover, interaction, and general equilibrium effects," FSES Working Papers 481, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    17. Chuan Ju & Zhi Geng, 2010. "Criteria for surrogate end points based on causal distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 129-142, January.
    18. Eva Deuchert & Martin Huber & Mark Schelker, 2019. "Direct and Indirect Effects Based on Difference-in-Differences With an Application to Political Preferences Following the Vietnam Draft Lottery," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 710-720, October.
    19. Tyler J. VanderWeele, 2010. "Direct and Indirect Effects for Neighborhood-Based Clustered and Longitudinal Data," Sociological Methods & Research, , vol. 38(4), pages 515-544, May.
    20. Yue Wang & Robin Mogg & Jared Lunceford, 2012. "Evaluating Correlation-Based Metric for Surrogate Marker Qualification within a Causal Correlation Framework," Biometrics, The International Biometric Society, vol. 68(2), pages 617-627, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:66:y:2010:i:2:p:523-531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.