IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v183y2020i4p1677-1703.html
   My bibliography  Save this article

Health effects of power plant emissions through ambient air quality

Author

Listed:
  • Chanmin Kim
  • Lucas R. F. Henneman
  • Christine Choirat
  • Corwin M. Zigler

Abstract

Coal burning power plants are a frequent target of regulatory programmes because of their emission of chemicals that are known precursors to the formation of ambient particulate air pollution. Health impact assessments of emissions from coal power plants typically rely on assumed causal relationships between emissions, ambient pollution and health, many of which have never been empirically verified. We offer a novel statistical evaluation of some of these presumed causal relationships, integrating the formality of causal inference methods with repurposed tools from atmospheric science to accommodate the central challenge of long‐range pollution transport of emissions from power plants to exposed populations. The statistical approach follows recent work on Bayesian methods for deploying principal stratification and causal mediation analysis in tandem to characterize the extent to which decreased sulphur dioxide emissions from 410 power plants across the USA impact mortality and hospitalization outcomes across Medicare beneficiaries residing across 12370 locations in a manner that is mediated through reductions of ambient fine particulate pollution. The result is the first epidemiological investigation integrating causal inference methodology with direct measurements of coal emissions, pollution transport, ambient pollution and human health in a single analysis, indicating the potential for data science at the intersection of statistics, epidemiology and atmospheric science.

Suggested Citation

  • Chanmin Kim & Lucas R. F. Henneman & Christine Choirat & Corwin M. Zigler, 2020. "Health effects of power plant emissions through ambient air quality," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1677-1703, October.
  • Handle: RePEc:bla:jorssa:v:183:y:2020:i:4:p:1677-1703
    DOI: 10.1111/rssa.12547
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12547
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    2. Gustafson Paul, 2010. "Bayesian Inference for Partially Identified Models," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-20, March.
    3. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    4. Laura Forastiere & Fabrizia Mealli & Tyler J. VanderWeele, 2016. "Identification and Estimation of Causal Mechanisms in Clustered Encouragement Designs: Disentangling Bed Nets Using Bayesian Principal Stratification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 510-525, April.
    5. Fabrizia Mealli & Barbara Pacini, 2013. "Using Secondary Outcomes to Sharpen Inference in Randomized Experiments With Noncompliance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1120-1131, September.
    6. Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.
    7. VanderWeele, Tyler J., 2008. "Simple relations between principal stratification and direct and indirect effects," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2957-2962, December.
    8. Ho, Daniel E. & Imai, Kosuke & King, Gary & Stuart, Elizabeth A., 2007. "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis, Cambridge University Press, vol. 15(3), pages 199-236, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wendy Olsen & Manasi Bera & Amaresh Dubey & Jihye Kim & Arkadiusz Wiśniowski & Purva Yadav, 2020. "Hierarchical Modelling of COVID-19 Death Risk in India in the Early Phase of the Pandemic," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 32(5), pages 1476-1503, December.
    2. Chanmin Kim & Mauricio Tec & Corwin Zigler, 2023. "Bayesian nonparametric adjustment of confounding," Biometrics, The International Biometric Society, vol. 79(4), pages 3252-3265, December.
    3. Li, Zheng & Jin, Bohan, 2024. "A breath of fresh air: Coal power plant closures and health in China," Energy Economics, Elsevier, vol. 129(C).
    4. Susana Silva & Erika Laranjeira & Isabel Soares, 2021. "Health Benefits from Renewable Electricity Sources: A Review," Energies, MDPI, vol. 14(20), pages 1-17, October.
    5. Hernandez-Cortes, Danae & Meng, Kyle C., 2023. "Do environmental markets cause environmental injustice? Evidence from California’s carbon market," Journal of Public Economics, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Forastiere & Patrizia Lattarulo & Marco Mariani & Fabrizia Mealli & Laura Razzolini, 2021. "Exploring Encouragement, Treatment, and Spillover Effects Using Principal Stratification, With Application to a Field Experiment on Teens’ Museum Attendance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 244-258, January.
    2. Silvia Noirjean & Mario Biggeri & Laura Forastiere & Fabrizia Mealli & Maria Nannini, 2023. "Estimating causal effects of community health financing via principal stratification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1317-1350, October.
    3. Fabrizia Mealli & Barbara Pacini & Elena Stanghellini, 2016. "Identification of Principal Causal Effects Using Additional Outcomes in Concentration Graphs," Journal of Educational and Behavioral Statistics, , vol. 41(5), pages 463-480, October.
    4. Huber, Martin & Steinmayr, Andreas, 2017. "A Framework for Separating Individual Treatment Effects from Spillover, Interaction, and General Equilibrium Effects," IZA Discussion Papers 10648, Institute of Labor Economics (IZA).
    5. Michela Baccini & Alessandra Mattei & Fabrizia Mealli, 2015. "Bayesian inference for causal mechanisms with application to a randomized study for postoperative pain control," Econometrics Working Papers Archive 2015_06, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    6. Laura Forastiere & Fabrizia Mealli & Tyler J. VanderWeele, 2016. "Identification and Estimation of Causal Mechanisms in Clustered Encouragement Designs: Disentangling Bed Nets Using Bayesian Principal Stratification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 510-525, April.
    7. Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
    8. Zhichao Jiang & Peng Ding & Zhi Geng, 2016. "Principal causal effect identification and surrogate end point evaluation by multiple trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 829-848, September.
    9. Michael R. Elliott & Anna Conlon & Yun Li, 2013. "Discussion on “Surrogate Measures and Consistent Surrogates”," Biometrics, The International Biometric Society, vol. 69(3), pages 565-569, September.
    10. Martin Huber & Mark Schelker & Anthony Strittmatter, 2022. "Direct and Indirect Effects based on Changes-in-Changes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 432-443, January.
    11. Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
    12. Andrea Mercatanti & Fan Li, 2017. "Do debit cards decrease cash demand?: causal inference and sensitivity analysis using principal stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 759-776, August.
    13. Shuxi Zeng & Fan Li & Peng Ding, 2020. "Is being an only child harmful to psychological health?: evidence from an instrumental variable analysis of China's one‐child policy," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1615-1635, October.
    14. Stephens Alisa & Keele Luke & Joffe Marshall, 2016. "Generalized Structural Mean Models for Evaluating Depression as a Post-treatment Effect Modifier of a Jobs Training Intervention," Journal of Causal Inference, De Gruyter, vol. 4(2), pages 1-17, September.
    15. VanderWeele Tyler J, 2011. "Principal Stratification -- Uses and Limitations," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-14, July.
    16. Yun Li & Jeremy M.G. Taylor & Michael R. Elliott, 2010. "A Bayesian Approach to Surrogacy Assessment Using Principal Stratification in Clinical Trials," Biometrics, The International Biometric Society, vol. 66(2), pages 523-531, June.
    17. Eva Deuchert & Martin Huber & Mark Schelker, 2019. "Direct and Indirect Effects Based on Difference-in-Differences With an Application to Political Preferences Following the Vietnam Draft Lottery," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 710-720, October.
    18. Daniel E. Ho & Mark G. Kelman, 2014. "Does Class Size Affect the Gender Gap? A Natural Experiment in Law," The Journal of Legal Studies, University of Chicago Press, vol. 43(2), pages 291-321.
    19. Bia, Michela & Flores-Lagunes, Alfonso & Mercatanti, Andrea, 2018. "Evaluation of Language Training Programs in Luxembourg using Principal Stratification," GLO Discussion Paper Series 289, Global Labor Organization (GLO).
    20. Luna Bellani & Michela Bia, 2016. "Intergenerational poverty transmission in Europe: The role of education," Working Paper Series of the Department of Economics, University of Konstanz 2016-02, Department of Economics, University of Konstanz.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:183:y:2020:i:4:p:1677-1703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.