IDEAS home Printed from https://ideas.repec.org/a/pal/eurjdr/v32y2020i5d10.1057_s41287-020-00333-5.html
   My bibliography  Save this article

Hierarchical Modelling of COVID-19 Death Risk in India in the Early Phase of the Pandemic

Author

Listed:
  • Wendy Olsen

    (University of Manchester)

  • Manasi Bera

    (Indian Institute of Dalit Studies)

  • Amaresh Dubey

    (Jawaharlal Nehru University)

  • Jihye Kim

    (University of Manchester)

  • Arkadiusz Wiśniowski

    (University of Manchester)

  • Purva Yadav

    (Jawaharlal Nehru University)

Abstract

We improve upon the modelling of India’s pandemic vulnerability. Our model is multidisciplinary and recognises the nested levels of the epidemic. We create a model of the risk of severe COVID-19 and death, instead of a model of transmission. Our model allows for socio-demographic-group differentials in risk, obesity and underweight people, morbidity status and other conditioning regional and lifestyle factors. We build a hierarchical multilevel model of severe COVID-19 cases, using three different data sources: the National Family Health Survey for 2015/16, Census data for 2011 and data for COVID-19 deaths obtained cumulatively until June 2020. We provide results for 11 states of India, enabling best-yet targeting of policy actions. COVID-19 deaths in north and central India were higher in areas with older and overweight populations, and were more common among people with pre-existing health conditions, or who smoke, or who live in urban areas. Policy experts may both want to ‘follow World Health Organisation advice’ and yet also use disaggregated and spatially specific data to improve wellbeing outcomes during the pandemic. The future uses of our innovative data-combining model are numerous.

Suggested Citation

  • Wendy Olsen & Manasi Bera & Amaresh Dubey & Jihye Kim & Arkadiusz Wiśniowski & Purva Yadav, 2020. "Hierarchical Modelling of COVID-19 Death Risk in India in the Early Phase of the Pandemic," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 32(5), pages 1476-1503, December.
  • Handle: RePEc:pal:eurjdr:v:32:y:2020:i:5:d:10.1057_s41287-020-00333-5
    DOI: 10.1057/s41287-020-00333-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41287-020-00333-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41287-020-00333-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. World Health Organization, 2020. "Smoking and COVID-19: Scientific brief," University of California at San Francisco, Center for Tobacco Control Research and Education qt22m8z3sq, Center for Tobacco Control Research and Education, UC San Francisco.
    3. Arkadiusz Wiśniowski & Jonathan J. Forster & Peter W. F. Smith & Jakub Bijak & James Raymer, 2016. "Integrated modelling of age and sex patterns of European migration," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 1007-1024, October.
    4. Chanmin Kim & Lucas R. F. Henneman & Christine Choirat & Corwin M. Zigler, 2020. "Health effects of power plant emissions through ambient air quality," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1677-1703, October.
    5. Borooah, Vani, 2010. "Inequality in health outcomes in India: the role of caste and religion," MPRA Paper 19832, University Library of Munich, Germany.
    6. Wendy Olsen, 2007. "Pluralist methodology for development economics: the example of moral economy of Indian labour markets," Journal of Economic Methodology, Taylor & Francis Journals, vol. 14(1), pages 57-82.
    7. Borooah, Vani & Dubey, Amaresh & Iyer, Sriya, 2007. "The Effectiveness of Jobs Reservation: Caste, Religion, and Economic Status in India," MPRA Paper 19421, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katsushi S. Imai & Nidhi Kaicker & Raghav Gaiha, 2021. "Severity of the COVID‐19 pandemic in India," Review of Development Economics, Wiley Blackwell, vol. 25(2), pages 517-546, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    2. Maja Micevska & Dil Bahadur Rahut, 2008. "Rural Nonfarm Employment and Incomes in the Himalayas," Economic Development and Cultural Change, University of Chicago Press, vol. 57(1), pages 163-193, October.
    3. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    4. Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," MPRA Paper 105011, University Library of Munich, Germany.
    5. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    6. Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
    7. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    8. David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.
    9. Bharathi, Naveen & Malghan, Deepak & Rahman, Andaleeb, 2018. "Isolated by Caste: Neighbourhood-Scale Residential Segregation in Indian Metros," SocArXiv 9ynpz, Center for Open Science.
    10. Burbano, Vanessa & Padilla, Nicolas & Meier, Stephan, 2020. "Gender Differences in Preferences for Meaning at Work," IZA Discussion Papers 13053, Institute of Labor Economics (IZA).
    11. Robert Kubinec & Haillie Na‐Kyung Lee & Andrey Tomashevskiy, 2021. "Politically connected companies are less likely to shutdown due to COVID‐19 restrictions," Social Science Quarterly, Southwestern Social Science Association, vol. 102(5), pages 2155-2169, September.
    12. Barrington-Leigh, C.P., 2024. "The econometrics of happiness: Are we underestimating the returns to education and income?," Journal of Public Economics, Elsevier, vol. 230(C).
    13. Salvatore Nunnari & Massimiliano Pozzi, 2022. "Meta-Analysis of Inequality Aversion Estimates," CESifo Working Paper Series 9851, CESifo.
    14. Andreas Kryger Jensen & Claus Thorn Ekstrøm, 2021. "Quantifying the trendiness of trends," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 98-121, January.
    15. Chhavi Tiwari & Srinivas Goli & Mohammad Zahid Siddiqui & Pradeep S. Salve, 2022. "Poverty, wealth inequality and financial inclusion among castes in Hindu and Muslim communities in Uttar Pradesh, India," Journal of International Development, John Wiley & Sons, Ltd., vol. 34(6), pages 1227-1255, August.
    16. Lauderdale, Benjamin E. & Bailey, Delia & Blumenau, Jack & Rivers, Douglas, 2020. "Model-based pre-election polling for national and sub-national outcomes in the US and UK," International Journal of Forecasting, Elsevier, vol. 36(2), pages 399-413.
    17. Tamara Broderick & Ryan Giordano & Rachael Meager, 2020. "An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?," Papers 2011.14999, arXiv.org, revised Jul 2023.
    18. Kenneth F. Kellner & Arielle W. Parsons & Roland Kays & Joshua J. Millspaugh & Christopher T. Rota, 2022. "A Two-Species Occupancy Model with a Continuous-Time Detection Process Reveals Spatial and Temporal Interactions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 321-338, June.
    19. Owen G. Ward & Jing Wu & Tian Zheng & Anna L. Smith & James P. Curley, 2022. "Network Hawkes process models for exploring latent hierarchy in social animal interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1402-1426, November.
    20. Ravi Srivastava, 2019. "Emerging Dynamics of Labour Market Inequality in India: Migration, Informality, Segmentation and Social Discrimination," The Indian Journal of Labour Economics, Springer;The Indian Society of Labour Economics (ISLE), vol. 62(2), pages 147-171, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:eurjdr:v:32:y:2020:i:5:d:10.1057_s41287-020-00333-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.