IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v4y2016i2p17n4.html
   My bibliography  Save this article

Generalized Structural Mean Models for Evaluating Depression as a Post-treatment Effect Modifier of a Jobs Training Intervention

Author

Listed:
  • Stephens Alisa

    (Department of Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine 624 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA)

  • Keele Luke

    (304 Old North, 37th & O St, NW, Georgetown University, Washington, DC, USA)

  • Joffe Marshall

    (Department of Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine 624 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA)

Abstract

In randomized controlled trials, the evaluation of an overall treatment effect is often followed by effect modification or subgroup analyses, where the possibility of a different magnitude or direction of effect for varying values of a covariate is explored. While studies of effect modification are typically restricted to pretreatment covariates, longitudinal experimental designs permit the examination of treatment effect modification by intermediate outcomes, where intermediates are measured after treatment but before the final outcome. We present a novel application of generalized structural mean models (GSMMs) for simultaneously assessing effect modification by post-treatment covariates and accounting for noncompliance to assigned treatment status. The proposed approach may also be used to identify post-treatment effect modifiers in the absence of noncompliance. The methods are evaluated using a simulation study that demonstrates that our approach retains consistent estimation of effect modification by intermediate variables that are affected by treatment and also predict outcomes. We illustrate the method using a randomized trial designed to promote re-employment through teaching skills to enhance self-esteem and inoculate job seekers against setbacks in the job search process. Our analysis provides some evidence that the intervention was much less successful among subjects that displayed higher levels of depression at intermediate post-treatment waves of the study. We also compare the assumptions of our approach and principal stratification as alternatives to account for differences in effects by intermediate variables.

Suggested Citation

  • Stephens Alisa & Keele Luke & Joffe Marshall, 2016. "Generalized Structural Mean Models for Evaluating Depression as a Post-treatment Effect Modifier of a Jobs Training Intervention," Journal of Causal Inference, De Gruyter, vol. 4(2), pages 1-17, September.
  • Handle: RePEc:bpj:causin:v:4:y:2016:i:2:p:17:n:4
    DOI: 10.1515/jci-2015-0032
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2015-0032
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2015-0032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    2. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    3. P. W. Lavori & R. Dawson, 2000. "A design for testing clinical strategies: biased adaptive within‐subject randomization," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(1), pages 29-38.
    4. Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.
    5. Thomas R. Ten Have & Marshall M. Joffe & Kevin G. Lynch & Gregory K. Brown & Stephen A. Maisto & Aaron T. Beck, 2007. "Causal Mediation Analyses with Rank Preserving Models," Biometrics, The International Biometric Society, vol. 63(3), pages 926-934, September.
    6. Dean Follmann, 2006. "Augmented Designs to Assess Immune Response in Vaccine Trials," Biometrics, The International Biometric Society, vol. 62(4), pages 1161-1169, December.
    7. Jack Cuzick & Peter Sasieni & Jonathan Myles & Jonathan Tyrer, 2007. "Estimating the effect of treatment in a proportional hazards model in the presence of non‐compliance and contamination," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 565-588, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephens Alisa & Joffe Marshall & Keele Luke, 2016. "Generalized Structural Mean Models for Evaluating Depression as a Post-treatment Effect Modifier of a Jobs Training Intervention," Journal of Causal Inference, De Gruyter, vol. 4(2), pages 1, September.
    2. Fabrizia Mealli & Barbara Pacini & Elena Stanghellini, 2016. "Identification of Principal Causal Effects Using Additional Outcomes in Concentration Graphs," Journal of Educational and Behavioral Statistics, , vol. 41(5), pages 463-480, October.
    3. Laura Forastiere & Fabrizia Mealli & Tyler J. VanderWeele, 2016. "Identification and Estimation of Causal Mechanisms in Clustered Encouragement Designs: Disentangling Bed Nets Using Bayesian Principal Stratification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 510-525, April.
    4. Zhichao Jiang & Peng Ding & Zhi Geng, 2016. "Principal causal effect identification and surrogate end point evaluation by multiple trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 829-848, September.
    5. Bijwaard, G.E.; & Jones, A.M.;, 2019. "Education and life-expectancy and how the relationship is mediated through changes in behaviour: a principal stratification approach for hazard rates," Health, Econometrics and Data Group (HEDG) Working Papers 19/05, HEDG, c/o Department of Economics, University of York.
    6. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    7. Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
    8. Anna M. Wilke & Donald P. Green & Jasper Cooper, 2020. "A placebo design to detect spillovers from an education–entertainment experiment in Uganda," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1075-1096, June.
    9. Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
    10. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    11. VanderWeele Tyler J, 2011. "Principal Stratification -- Uses and Limitations," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-14, July.
    12. Bibhas Chakraborty & Eric B. Laber & Yingqi Zhao, 2013. "Inference for Optimal Dynamic Treatment Regimes Using an Adaptive m-Out-of-n Bootstrap Scheme," Biometrics, The International Biometric Society, vol. 69(3), pages 714-723, September.
    13. Yan‐Cheng Chao & Thomas M. Braun & Roy N. Tamura & Kelley M. Kidwell, 2020. "A Bayesian group sequential small n sequential multiple‐assignment randomized trial," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 663-680, June.
    14. Gilbert Peter B. & Gabriel Erin E. & Huang Ying & Chan Ivan S.F., 2015. "Surrogate Endpoint Evaluation: Principal Stratification Criteria and the Prentice Definition," Journal of Causal Inference, De Gruyter, vol. 3(2), pages 157-175, September.
    15. van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
    16. Giorgos Bakoyannis, 2023. "Estimating optimal individualized treatment rules with multistate processes," Biometrics, The International Biometric Society, vol. 79(4), pages 2830-2842, December.
    17. Michela Baccini & Alessandra Mattei & Fabrizia Mealli, 2015. "Bayesian inference for causal mechanisms with application to a randomized study for postoperative pain control," Econometrics Working Papers Archive 2015_06, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    18. Emily K. Roberts & Michael R. Elliott & Jeremy M. G. Taylor, 2023. "Solutions for surrogacy validation with longitudinal outcomes for a gene therapy," Biometrics, The International Biometric Society, vol. 79(3), pages 1840-1852, September.
    19. Erica E. M. Moodie & Thomas S. Richardson & David A. Stephens, 2007. "Demystifying Optimal Dynamic Treatment Regimes," Biometrics, The International Biometric Society, vol. 63(2), pages 447-455, June.
    20. Chanmin Kim & Lucas R. F. Henneman & Christine Choirat & Corwin M. Zigler, 2020. "Health effects of power plant emissions through ambient air quality," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1677-1703, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:4:y:2016:i:2:p:17:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.