IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i4p3941-3953.html
   My bibliography  Save this article

Melding wildlife surveys to improve conservation inference

Author

Listed:
  • Justin J. Van Ee
  • Christian A. Hagen
  • David C. Pavlacky Jr.
  • Kent A. Fricke
  • Matthew D. Koslovsky
  • Mevin B. Hooten

Abstract

Integrated models are a popular tool for analyzing species of conservation concern. Species of conservation concern are often monitored by multiple entities that generate several datasets. Individually, these datasets may be insufficient for guiding management due to low spatio‐temporal resolution, biased sampling, or large observational uncertainty. Integrated models provide an approach for assimilating multiple datasets in a coherent framework that can compensate for these deficiencies. While conventional integrated models have been used to assimilate count data with surveys of survival, fecundity, and harvest, they can also assimilate ecological surveys that have differing spatio‐temporal regions and observational uncertainties. Motivated by independent aerial and ground surveys of lesser prairie‐chicken, we developed an integrated modeling approach that assimilates density estimates derived from surveys with distinct sources of observational error into a joint framework that provides shared inference on spatio‐temporal trends. We model these data using a Bayesian Markov melding approach and apply several data augmentation strategies for efficient sampling. In a simulation study, we show that our integrated model improved predictive performance relative to models for analyzing the surveys independently. We use the integrated model to facilitate prediction of lesser prairie‐chicken density at unsampled regions and perform a sensitivity analysis to quantify the inferential cost associated with reduced survey effort.

Suggested Citation

  • Justin J. Van Ee & Christian A. Hagen & David C. Pavlacky Jr. & Kent A. Fricke & Matthew D. Koslovsky & Mevin B. Hooten, 2023. "Melding wildlife surveys to improve conservation inference," Biometrics, The International Biometric Society, vol. 79(4), pages 3941-3953, December.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3941-3953
    DOI: 10.1111/biom.13903
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13903
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David L. Borchers & Peter Nightingale & Ben C. Stevenson & Rachel M. Fewster, 2022. "A latent capture history model for digital aerial surveys," Biometrics, The International Biometric Society, vol. 78(1), pages 274-285, March.
    2. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    3. D. L. Borchers & J. L. Laake & C. Southwell & C. G. M. Paxton, 2006. "Accommodating Unmodeled Heterogeneity in Double-Observer Distance Sampling Surveys," Biometrics, The International Biometric Society, vol. 62(2), pages 372-378, June.
    4. Montserrat Fuentes & Adrian E. Raftery, 2005. "Model Evaluation and Spatial Interpolation by Bayesian Combination of Observations with Outputs from Numerical Models," Biometrics, The International Biometric Society, vol. 61(1), pages 36-45, March.
    5. Dimitris Rizopoulos & Geert Verbeke & Geert Molenberghs, 2008. "Shared parameter models under random effects misspecification," Biometrika, Biometrika Trust, vol. 95(1), pages 63-74.
    6. Peter J. Diggle & Raquel Menezes & Ting‐li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232, March.
    7. Stephen T. Buckland & Jeffrey L. Laake & David L. Borchers, 2010. "Double-Observer Line Transect Methods: Levels of Independence," Biometrics, The International Biometric Society, vol. 66(1), pages 169-177, March.
    8. Amemiya, Takeshi, 1984. "Tobit models: A survey," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 3-61.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. T. Buckland & C. S. Oedekoven & D. L. Borchers, 2016. "Model-Based Distance Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 58-75, March.
    2. Paul B Conn & Jeffrey L Laake & Devin S Johnson, 2012. "A Hierarchical Modeling Framework for Multiple Observer Transect Surveys," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-13, August.
    3. Brian J. Reich & Howard H. Chang & Kristen M. Foley, 2014. "A spectral method for spatial downscaling," Biometrics, The International Biometric Society, vol. 70(4), pages 932-942, December.
    4. Benjamin M. Taylor & Ricardo Andrade‐Pacheco & Hugh J. W. Sturrock, 2018. "Continuous inference for aggregated point process data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1125-1150, October.
    5. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    6. Calcagno, R. & Renneboog, L.D.R., 2004. "Capital Structure and Managerial Compensation : The Effects of Renumeration Seniority," Discussion Paper 2004-120, Tilburg University, Center for Economic Research.
    7. Marina Rybalka, 2015. "The innovative input mix. Assessing the importance of R&D and ICT investments for firm performance in manufacturing and services," Discussion Papers 801, Statistics Norway, Research Department.
    8. T.R.L. Fry & R.D. Brooks & Br. Comley & J. Zhang, 1993. "Economic Motivations for Limited Dependent and Qualitative Variable Models," The Economic Record, The Economic Society of Australia, vol. 69(2), pages 193-205, June.
    9. Niko Hauzenberger & Florian Huber, 2020. "Model instability in predictive exchange rate regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
    10. Alfred Michael Dockery & Mark N. Harris & Nicholas Holyoak & Ranjodh B. Singh, 2021. "A methodology for projecting sparse populations and its application to remote Indigenous communities," Journal of Geographical Systems, Springer, vol. 23(1), pages 37-61, January.
    11. Simplice A. Asongu & Mushfiqur Rahman & Mohammad Alghababsheh, 2022. "Information Technology, Business Sustainability and Female Economic Participation in Sub-Saharan Africa," Working Papers 22/057, European Xtramile Centre of African Studies (EXCAS).
    12. Anindya Bhadra & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Inferring network structure in non†normal and mixed discrete†continuous genomic data," Biometrics, The International Biometric Society, vol. 74(1), pages 185-195, March.
    13. Andrés Felipe Martínez, 2006. "Determinantes de la supervivencia de empresas industriales en el área metropolitana de Cali 1994-2003," Ensayos Sobre Economía Regional (ESER) 2320, Banco de la República - Economía Regional.
    14. Cao, Lihong & Du, Yan & Hansen, Jens Ørding, 2017. "Foreign institutional investors and dividend policy: Evidence from China," International Business Review, Elsevier, vol. 26(5), pages 816-827.
    15. Eric Chiang & Djeto Assane, 2007. "Determinants of music copyright violations on the university campus," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 31(3), pages 187-204, September.
    16. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    17. Renneboog, L.D.R. & Szilagyi, P.G., 2009. "Shareholder Activism through the Proxy Process," Other publications TiSEM cc25d736-2965-4511-b100-1, Tilburg University, School of Economics and Management.
    18. Brannlund, Runar & Nordstrom, Jonas, 2004. "Carbon tax simulations using a household demand model," European Economic Review, Elsevier, vol. 48(1), pages 211-233, February.
    19. Eunsil Seok & Akhgar Ghassabian & Yuyan Wang & Mengling Liu, 2024. "Statistical Methods for Modeling Exposure Variables Subject to Limit of Detection," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 435-458, July.
    20. Verbeek, M.J.C.M. & Nijman, T.E., 1992. "Incomplete panels and selection bias : A survey," Discussion Paper 1992-7, Tilburg University, Center for Economic Research.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3941-3953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.