Continuous inference for aggregated point process data
Author
Abstract
Suggested Citation
DOI: 10.1111/rssa.12347
Download full text from publisher
References listed on IDEAS
- Taylor, Benjamin M. & Davies, Tilman M. & Rowlingson, Barry S. & Diggle, Peter J., 2015. "Bayesian Inference and Data Augmentation Schemes for Spatial, Spatiotemporal and Multivariate Log-Gaussian Cox Processes in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i07).
- Anders Brix & Peter J. Diggle, 2001. "Spatiotemporal prediction for log‐Gaussian Cox processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 823-841.
- Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
- Montserrat Fuentes & Adrian E. Raftery, 2005. "Model Evaluation and Spatial Interpolation by Bayesian Combination of Observations with Outputs from Numerical Models," Biometrics, The International Biometric Society, vol. 61(1), pages 36-45, March.
- Peter J. Diggle & Raquel Menezes & Ting‐li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232, March.
- Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
- Diggle, Peter J. & Guan, Yongtao & Hart, Anthony C. & Paize, Fauzia & Stanton, Michelle, 2010. "Estimating Individual-Level Risk in Spatial Epidemiology Using Spatially Aggregated Information on the Population at Risk," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1394-1402.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chan‐Hoong Leong & Soo Jiuan Tan & Elizabeth A. Minton & Siok Kuan Tambyah, 2021. "Economic hardship and neighborhood diversity: Influences on consumer well‐being," Journal of Consumer Affairs, Wiley Blackwell, vol. 55(4), pages 1226-1248, December.
- Duncan Lee & Craig Anderson, 2023. "Delivering spatially comparable inference on the risks of multiple severities of respiratory disease from spatially misaligned disease count data," Biometrics, The International Biometric Society, vol. 79(3), pages 2691-2704, September.
- Tim C. D. Lucas & Anita K. Nandi & Elisabeth G. Chestnutt & Katherine A. Twohig & Suzanne H. Keddie & Emma L. Collins & Rosalind E. Howes & Michele Nguyen & Susan F. Rumisha & Andre Python & Rohan Ara, 2021. "Mapping malaria by sharing spatial information between incidence and prevalence data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 733-749, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Veronica J. Berrocal & Alan E. Gelfand & David M. Holland, 2012. "Space-Time Data fusion Under Error in Computer Model Output: An Application to Modeling Air Quality," Biometrics, The International Biometric Society, vol. 68(3), pages 837-848, September.
- Matthew J. Heaton & Stephan R. Sain & Andrew J. Monaghan & Olga V. Wilhelmi & Mary H. Hayden, 2015. "An Analysis of an Incomplete Marked Point Pattern of Heat-Related 911 Calls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 123-135, March.
- Sujit K. Sahu & Alan E. Gelfand & David M. Holland, 2010. "Fusing point and areal level space–time data with application to wet deposition," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 77-103, January.
- Brian J. Reich & Howard H. Chang & Kristen M. Foley, 2014. "A spectral method for spatial downscaling," Biometrics, The International Biometric Society, vol. 70(4), pages 932-942, December.
- Taylor, Benjamin M. & Davies, Tilman M. & Rowlingson, Barry S. & Diggle, Peter J., 2015. "Bayesian Inference and Data Augmentation Schemes for Spatial, Spatiotemporal and Multivariate Log-Gaussian Cox Processes in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i07).
- Justin J. Van Ee & Christian A. Hagen & David C. Pavlacky Jr. & Kent A. Fricke & Matthew D. Koslovsky & Mevin B. Hooten, 2023. "Melding wildlife surveys to improve conservation inference," Biometrics, The International Biometric Society, vol. 79(4), pages 3941-3953, December.
- Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
- Ranjan, Rakesh & Sen, Rijji & Upadhyay, Satyanshu K., 2021. "Bayes analysis of some important lifetime models using MCMC based approaches when the observations are left truncated and right censored," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Ioannis Bournakis & Mike Tsionas, 2024.
"A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
- Bournakis, Ioannis & Tsionas, Mike G., 2023. "A Non-Parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," MPRA Paper 118100, University Library of Munich, Germany.
- Zhang, Tonglin, 2017. "An example of inconsistent MLE of spatial covariance parameters under increasing domain asymptotics," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 108-113.
- Chen, Zhongfei & Wanke, Peter & Tsionas, Mike G., 2018. "Assessing the strategic fit of potential M&As in Chinese banking: A novel Bayesian stochastic frontier approach," Economic Modelling, Elsevier, vol. 73(C), pages 254-263.
- Girard, Didier A., 2016. "Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 191-197.
- Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
- Caroline Khan & Mike G. Tsionas, 2021. "Constraints in models of production and cost via slack-based measures," Empirical Economics, Springer, vol. 61(6), pages 3347-3374, December.
- Jia Liu & John M. Maheu & Yong Song, 2024.
"Identification and forecasting of bull and bear markets using multivariate returns,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 723-745, August.
- Liu, Jia & Maheu, John M & Song, Yong, 2023. "Identification and Forecasting of Bull and Bear Markets using Multivariate Returns," MPRA Paper 119515, University Library of Munich, Germany.
- Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.
- Vanhatalo, Jarno & Veneranta, Lari & Hudd, Richard, 2012. "Species distribution modeling with Gaussian processes: A case study with the youngest stages of sea spawning whitefish (Coregonus lavaretus L. s.l.) larvae," Ecological Modelling, Elsevier, vol. 228(C), pages 49-58.
- Stephen G. Hall & Heather D. Gibson & G. S. Tavlas & Mike G. Tsionas, 2020. "A Monte Carlo Study of Time Varying Coefficient (TVC) Estimation," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 115-130, June.
- Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
- Rama K. Malladi, 2024. "Benchmark Analysis of Machine Learning Methods to Forecast the U.S. Annual Inflation Rate During a High-Decile Inflation Period," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 335-375, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:181:y:2018:i:4:p:1125-1150. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.