IDEAS home Printed from https://ideas.repec.org/p/ris/sbgwpe/2018_008.html
   My bibliography  Save this paper

Model instability in predictive exchange rate regressions

Author

Listed:
  • Hauzenberger, Niko

    (WU Wirtschaftsuniversität Wien)

  • Huber, Florian

    (University of Salzburg)

Abstract

In this paper we aim to improve existing empirical exchange rate models by accounting for uncertainty with respect to the underlying structural representation. Within a flexible Bayesian non-linear time series framework, our modeling approach assumes that different regimes are characterized by commonly used structural exchange rate models, with their evolution being driven by a Markov process. We assume a time-varying transition probability matrix with transition probabilities depending on a measure of the monetary policy stance of the central bank at the home and foreign country. We apply this model to a set of eight exchange rates against the US dollar. In a forecasting exercise, we show that model evidence varies over time and a model approach that takes this empirical evidence seriously yields improvements in accuracy of density forecasts for most currency pairs considered.

Suggested Citation

  • Hauzenberger, Niko & Huber, Florian, 2018. "Model instability in predictive exchange rate regressions," Working Papers in Economics 2018-8, University of Salzburg.
  • Handle: RePEc:ris:sbgwpe:2018_008
    as

    Download full text from publisher

    File URL: https://www.uni-salzburg.at/fileadmin/multimedia/SOWI/documents/VWL/Working_Papers/WP_08_18.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Angela Abbate & Massimiliano Marcellino, 2018. "Point, interval and density forecasts of exchange rates with time varying parameter models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(1), pages 155-179, January.
    2. Jiahan Li & Ilias Tsiakas & Wei Wang, 2015. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 293-341.
    3. Charles Engel & Kenneth D. West, 2005. "Exchange Rates and Fundamentals," Journal of Political Economy, University of Chicago Press, vol. 113(3), pages 485-517, June.
    4. Engel, Charles, 1994. "Can the Markov switching model forecast exchange rates?," Journal of International Economics, Elsevier, vol. 36(1-2), pages 151-165, February.
    5. Engel, Charles, 2014. "Exchange Rates and Interest Parity," Handbook of International Economics, in: Gopinath, G. & Helpman, . & Rogoff, K. (ed.), Handbook of International Economics, edition 1, volume 4, chapter 0, pages 453-522, Elsevier.
    6. Huber, Florian, 2017. "Structural breaks in Taylor rule based exchange rate models — Evidence from threshold time varying parameter models," Economics Letters, Elsevier, vol. 150(C), pages 48-52.
    7. Nelson C. Mark, 2009. "Changing Monetary Policy Rules, Learning, and Real Exchange Rate Dynamics," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(6), pages 1047-1070, September.
    8. Florian Huber & Manfred M. Fischer, 2018. "A Markov Switching Factor‐Augmented VAR Model for Analyzing US Business Cycles and Monetary Policy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(3), pages 575-604, June.
    9. Lucio Sarno & Giorgio Valente & Mark E. Wohar, 2004. "Monetary Fundamentals and Exchange Rate Dynamics under Different Nominal Regimes," Economic Inquiry, Western Economic Association International, vol. 42(2), pages 179-193, April.
    10. Byrne, Joseph P. & Korobilis, Dimitris & Ribeiro, Pinho J., 2016. "Exchange rate predictability in a changing world," Journal of International Money and Finance, Elsevier, vol. 62(C), pages 1-24.
    11. Huber, Florian & Zörner, Thomas O., 2019. "Threshold cointegration in international exchange rates:A Bayesian approach," International Journal of Forecasting, Elsevier, vol. 35(2), pages 458-473.
    12. Rapach, David E. & Wohar, Mark E., 2002. "Testing the monetary model of exchange rate determination: new evidence from a century of data," Journal of International Economics, Elsevier, vol. 58(2), pages 359-385, December.
    13. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    14. Kaufmann, Sylvia, 2015. "K-state switching models with time-varying transition distributions—Does loan growth signal stronger effects of variables on inflation?," Journal of Econometrics, Elsevier, vol. 187(1), pages 82-94.
    15. Molodtsova, Tanya & Nikolsko-Rzhevskyy, Alex & Papell, David H., 2008. "Taylor rules with real-time data: A tale of two countries and one exchange rate," Journal of Monetary Economics, Elsevier, vol. 55(Supplemen), pages 63-79, October.
    16. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    17. Wright, Jonathan H., 2008. "Bayesian Model Averaging and exchange rate forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
    18. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. Van Dijk, 2016. "Interconnections Between Eurozone and us Booms and Busts Using a Bayesian Panel Markov‐Switching VAR Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1352-1370, November.
    19. Tanya Molodtsova & Alex Nikolsko-Rzhevskyy & David H. Papell, 2011. "Taylor Rules and the Euro," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43, pages 535-552, March.
    20. Lucio Sarno, 2005. "Viewpoint: Towards a solution to the puzzles in exchange rate economics: where do we stand?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(3), pages 673-708, August.
    21. Frankel, Jeffrey A, 1979. "On the Mark: A Theory of Floating Exchange Rates Based on Real Interest Differentials," American Economic Review, American Economic Association, vol. 69(4), pages 610-622, September.
    22. Canova, Fabio, 1993. "Modelling and forecasting exchange rates with a Bayesian time-varying coefficient model," Journal of Economic Dynamics and Control, Elsevier, vol. 17(1-2), pages 233-261.
    23. Joscha Beckmann & Gary Koop & Dimitris Korobilis & Rainer Alexander Schüssler, 2020. "Exchange rate predictability and dynamic Bayesian learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 410-421, June.
    24. Hooper, Peter & Morton, John, 1982. "Fluctuations in the dollar: A model of nominal and real exchange rate determination," Journal of International Money and Finance, Elsevier, vol. 1(1), pages 39-56, January.
    25. Amisano, Gianni & Fagan, Gabriel, 2013. "Money growth and inflation: A regime switching approach," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 118-145.
    26. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    27. Groen, Jan J. J., 2000. "The monetary exchange rate model as a long-run phenomenon," Journal of International Economics, Elsevier, vol. 52(2), pages 299-319, December.
    28. Mark, Nelson C. & Sul, Donggyu, 2001. "Nominal exchange rates and monetary fundamentals: Evidence from a small post-Bretton woods panel," Journal of International Economics, Elsevier, vol. 53(1), pages 29-52, February.
    29. Filardo, Andrew J, 1994. "Business-Cycle Phases and Their Transitional Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 299-308, July.
    30. Huber Florian, 2016. "Forecasting exchange rates using multivariate threshold models," The B.E. Journal of Macroeconomics, De Gruyter, vol. 16(1), pages 193-210, January.
    31. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    32. Engel, Charles & West, Kenneth D., 2006. "Taylor Rules and the Deutschmark: Dollar Real Exchange Rate," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1175-1194, August.
    33. Tanya Molodtsova & David H. Papell, 2013. "Taylor Rule Exchange Rate Forecasting during the Financial Crisis," NBER International Seminar on Macroeconomics, University of Chicago Press, vol. 9(1), pages 55-97.
    34. Miguel Belmonte & Gary Koop, 2014. "Model Switching and Model Averaging in Time-Varying Parameter Regression Models," Advances in Econometrics, in: Bayesian Model Comparison, volume 34, pages 45-69, Emerald Group Publishing Limited.
    35. Dornbusch, Rudiger, 1976. "Expectations and Exchange Rate Dynamics," Journal of Political Economy, University of Chicago Press, vol. 84(6), pages 1161-1176, December.
    36. Beckmann, Joscha & Schüssler, Rainer, 2016. "Forecasting exchange rates under parameter and model uncertainty," Journal of International Money and Finance, Elsevier, vol. 60(C), pages 267-288.
    37. George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
    38. Molodtsova, Tanya & Papell, David H., 2009. "Out-of-sample exchange rate predictability with Taylor rule fundamentals," Journal of International Economics, Elsevier, vol. 77(2), pages 167-180, April.
    39. Chinn, Menzie D., 2006. "The (partial) rehabilitation of interest rate parity in the floating rate era: Longer horizons, alternative expectations, and emerging markets," Journal of International Money and Finance, Elsevier, vol. 25(1), pages 7-21, February.
    40. Mark, Nelson C, 1995. "Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictability," American Economic Review, American Economic Association, vol. 85(1), pages 201-218, March.
    41. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, December.
    42. Roberto Casarin & Domenico Sartore & Marco Tronzano, 2018. "A Bayesian Markov-Switching Correlation Model for Contagion Analysis on Exchange Rate Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 101-114, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eller, Markus & Hauzenberger, Niko & Huber, Florian & Schuberth, Helene & Vashold, Lukas, 2021. "The impact of macroprudential policies on capital flows in CESEE," Journal of International Money and Finance, Elsevier, vol. 119(C).
    2. Florian Huber & Daniel Kaufmann, 2020. "Trend Fundamentals and Exchange Rate Dynamics," Economica, London School of Economics and Political Science, vol. 87(348), pages 1016-1036, October.
    3. Aristidou, Chrystalleni & Lee, Kevin & Shields, Kalvinder, 2022. "Fundamentals, regimes and exchange rate forecasts: Insights from a meta exchange rate model," Journal of International Money and Finance, Elsevier, vol. 123(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Engel, Charles, 2014. "Exchange Rates and Interest Parity," Handbook of International Economics, in: Gopinath, G. & Helpman, . & Rogoff, K. (ed.), Handbook of International Economics, edition 1, volume 4, chapter 0, pages 453-522, Elsevier.
    2. Huber, Florian & Zörner, Thomas O., 2019. "Threshold cointegration in international exchange rates:A Bayesian approach," International Journal of Forecasting, Elsevier, vol. 35(2), pages 458-473.
    3. Amat, Christophe & Michalski, Tomasz & Stoltz, Gilles, 2018. "Fundamentals and exchange rate forecastability with simple machine learning methods," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 1-24.
    4. Byrne, Joseph P. & Korobilis, Dimitris & Ribeiro, Pinho J., 2016. "Exchange rate predictability in a changing world," Journal of International Money and Finance, Elsevier, vol. 62(C), pages 1-24.
    5. Joscha Beckmann & Gary Koop & Dimitris Korobilis & Rainer Alexander Schüssler, 2020. "Exchange rate predictability and dynamic Bayesian learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 410-421, June.
    6. David Alan Peel & Pantelis Promponas, 2016. "Forecasting the nominal exchange rate movements in a changing world. The case of the U.S. and the U.K," Working Papers 144439514, Lancaster University Management School, Economics Department.
    7. Panopoulou, Ekaterini & Souropanis, Ioannis, 2019. "The role of technical indicators in exchange rate forecasting," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 197-221.
    8. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    9. Salisu, Afees A. & Gupta, Rangan & Kim, Won Joong, 2022. "Exchange rate predictability with nine alternative models for BRICS countries," Journal of Macroeconomics, Elsevier, vol. 71(C).
    10. Stijn Claessens & M Ayhan Kose, 2017. "Asset prices and macroeconomic outcomes: a survey," BIS Working Papers 676, Bank for International Settlements.
    11. Xie, Zixiong & Chen, Shyh-Wei, 2019. "Exchange rates and fundamentals: A bootstrap panel data analysis," Economic Modelling, Elsevier, vol. 78(C), pages 209-224.
    12. Stijn Claessens & M Ayhan Kose, 2018. "Frontiers of macrofinancial linkages," BIS Papers, Bank for International Settlements, number 95.
    13. Kempa, Bernd & Riedel, Jana, 2013. "Nonlinearities in exchange rate determination in a small open economy: Some evidence for Canada," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 268-278.
    14. Lasha Kavtaradze & Manouchehr Mokhtari, 2018. "Factor Models And Time†Varying Parameter Framework For Forecasting Exchange Rates And Inflation: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 302-334, April.
    15. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    16. Kenneth Rogoff, 2009. "Exchange rates in the modern floating era: what do we really know?," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 145(1), pages 1-12, April.
    17. Kharrat, Sabrine & Hammami, Yacine & Fatnassi, Ibrahim, 2020. "On the cross-sectional relation between exchange rates and future fundamentals," Economic Modelling, Elsevier, vol. 89(C), pages 484-501.
    18. Works, Richard Floyd, 2016. "Econometric modeling of exchange rate determinants by market classification: An empirical analysis of Japan and South Korea using the sticky-price monetary theory," MPRA Paper 76382, University Library of Munich, Germany.
    19. Byrne, Joseph P. & Korobilis, Dimitris & Ribeiro, Pinho J., 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-24, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    20. Joseph Agyapong, 2021. "Application of Taylor Rule Fundamentals in Forecasting Exchange Rates," Economies, MDPI, vol. 9(2), pages 1-27, June.

    More about this item

    Keywords

    Empirical exchange rate models; exchange rate fundamentals; Markov switching;
    All these keywords.

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • F31 - International Economics - - International Finance - - - Foreign Exchange

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:sbgwpe:2018_008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jörg Paetzold (email available below). General contact details of provider: https://edirc.repec.org/data/iwsbgat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.