IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v21y2016i1d10.1007_s13253-015-0220-7.html
   My bibliography  Save this article

Model-Based Distance Sampling

Author

Listed:
  • S. T. Buckland

    (University of St Andrews)

  • C. S. Oedekoven

    (University of St Andrews)

  • D. L. Borchers

    (University of St Andrews)

Abstract

Conventional distance sampling adopts a mixed approach, using model-based methods for the detection process, and design-based methods to estimate animal abundance in the study region, given estimated probabilities of detection. In recent years, there has been increasing interest in fully model-based methods. Model-based methods are less robust for estimating animal abundance than conventional methods, but offer several advantages: they allow the analyst to explore how animal density varies by habitat or topography; abundance can be estimated for any sub-region of interest; they provide tools for analysing data from designed distance sampling experiments, to assess treatment effects. We develop a common framework for model-based distance sampling, and show how the various model-based methods that have been proposed fit within this framework.

Suggested Citation

  • S. T. Buckland & C. S. Oedekoven & D. L. Borchers, 2016. "Model-Based Distance Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 58-75, March.
  • Handle: RePEc:spr:jagbes:v:21:y:2016:i:1:d:10.1007_s13253-015-0220-7
    DOI: 10.1007/s13253-015-0220-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-015-0220-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-015-0220-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernanda F. C. Marques & Stephen T. Buckland, 2003. "Incorporating Covariates into Standard Line Transect Analyses," Biometrics, The International Biometric Society, vol. 59(4), pages 924-935, December.
    2. Tiago Marques & Stephen Buckland & Regina Bispo & Brett Howland, 2013. "Accounting for animal density gradients using independent information in distance sampling surveys," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 67-80, March.
    3. Stephen T. Buckland & Jeffrey L. Laake & David L. Borchers, 2010. "Double-Observer Line Transect Methods: Levels of Independence," Biometrics, The International Biometric Society, vol. 66(1), pages 169-177, March.
    4. D. L. Borchers & J. L. Laake & C. Southwell & C. G. M. Paxton, 2006. "Accommodating Unmodeled Heterogeneity in Double-Observer Distance Sampling Surveys," Biometrics, The International Biometric Society, vol. 62(2), pages 372-378, June.
    5. Devin S. Johnson & Jeffrey L. Laake & Jay M. Ver Hoef, 2010. "A Model-Based Approach for Making Ecological Inference from Distance Sampling Data," Biometrics, The International Biometric Society, vol. 66(1), pages 310-318, March.
    6. T. A. Marques & S. T. Buckland & D. L. Borchers & D. Tosh & R. A. McDonald, 2010. "Point Transect Sampling Along Linear Features," Biometrics, The International Biometric Society, vol. 66(4), pages 1247-1255, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David L. Borchers & Tiago A. Marques, 2017. "From distance sampling to spatial capture–recapture," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 475-494, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul B Conn & Jeffrey L Laake & Devin S Johnson, 2012. "A Hierarchical Modeling Framework for Multiple Observer Transect Surveys," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-13, August.
    2. Justin J. Van Ee & Christian A. Hagen & David C. Pavlacky Jr. & Kent A. Fricke & Matthew D. Koslovsky & Mevin B. Hooten, 2023. "Melding wildlife surveys to improve conservation inference," Biometrics, The International Biometric Society, vol. 79(4), pages 3941-3953, December.
    3. Tiago Marques & Stephen Buckland & Regina Bispo & Brett Howland, 2013. "Accounting for animal density gradients using independent information in distance sampling surveys," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 67-80, March.
    4. Earl F Becker & Aaron M Christ, 2015. "A Unimodal Model for Double Observer Distance Sampling Surveys," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
    5. David L Miller & Len Thomas, 2015. "Mixture Models for Distance Sampling Detection Functions," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-19, March.
    6. D. L. Borchers & B. C. Stevenson & D. Kidney & L. Thomas & T. A. Marques, 2015. "A Unifying Model for Capture-Recapture and Distance Sampling Surveys of Wildlife Populations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 195-204, March.
    7. S. T. Buckland & D. L. Borchers & A. Johnston & P. A. Henrys & T. A. Marques, 2007. "Line Transect Methods for Plant Surveys," Biometrics, The International Biometric Society, vol. 63(4), pages 989-998, December.
    8. Hiroshi Okamura & Shingo Minamikawa & Hans J. Skaug & Toshiya Kishiro, 2012. "Abundance Estimation of Long-Diving Animals Using Line Transect Methods," Biometrics, The International Biometric Society, vol. 68(2), pages 504-513, June.
    9. Devin S. Johnson & Jeffrey L. Laake & Jay M. Ver Hoef, 2010. "A Model-Based Approach for Making Ecological Inference from Distance Sampling Data," Biometrics, The International Biometric Society, vol. 66(1), pages 310-318, March.
    10. Stephen T. Buckland & Jeffrey L. Laake & David L. Borchers, 2010. "Double-Observer Line Transect Methods: Levels of Independence," Biometrics, The International Biometric Society, vol. 66(1), pages 169-177, March.
    11. D. I. MacKenzie & D. Clement, 2016. "Accounting for Lack of Independence and Partial Overlap of Observation Zones in Line-Transect Mark-Recapture Distance Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 41-57, March.
    12. Pavanato, Heloise J. & Wedekin, Leonardo L. & Guilherme-Silveira, Fernando R. & Engel, Márcia H. & Kinas, Paul G., 2017. "Estimating humpback whale abundance using hierarchical distance sampling," Ecological Modelling, Elsevier, vol. 358(C), pages 10-18.
    13. R. M. Fewster, 2011. "Variance Estimation for Systematic Designs in Spatial Surveys," Biometrics, The International Biometric Society, vol. 67(4), pages 1518-1531, December.
    14. Rachel A Vanausdall & Stephen J Dinsmore, 2020. "Detection and density of breeding marsh birds in Iowa wetlands," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-17, January.
    15. Lees, Kirsty J. & Guerin, Andrew J. & Masden, Elizabeth A., 2016. "Using kernel density estimation to explore habitat use by seabirds at a marine renewable wave energy test facility," Marine Policy, Elsevier, vol. 63(C), pages 35-44.
    16. Mark V. Bravington & David L. Miller & Sharon L. Hedley, 2021. "Variance Propagation for Density Surface Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 306-323, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:21:y:2016:i:1:d:10.1007_s13253-015-0220-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.